|
| 1 | +%% Parameters for BEV model Thermal system - run impirical refrigeration test harness |
| 2 | + |
| 3 | +% Copyright 2024 The MathWorks, Inc. |
| 4 | + |
| 5 | +%% Initial conditions |
| 6 | + |
| 7 | +vehicleThermal.cabin_p_init = 0.101325; % [MPa] Initial air pressure |
| 8 | +vehicleThermal.cabin_RH_init = 0.4; % Initial relative humidity |
| 9 | +vehicleThermal.cabin_CO2_init = 4e-4; % Initial CO2 mole fraction |
| 10 | +vehicleThermal.cabin_T_init = 298.15; % [K] Initial Temperature |
| 11 | +vehicleThermal.cabin_battVoltage = 100; % [V] Battery Voltage |
| 12 | +vehicleThermal.cabin_battVoltage = 1; % Battery SOC |
| 13 | +vehicleThermal.coolant_p_init = 0.101325; % [MPa] Initial coolant pressure |
| 14 | +vehicleThermal.ambient = 298.15; % [K] Ambient temperature |
| 15 | +vehicleThermal.CabinSpTp = 293.15 ; % [K] Cabin setpoint temperature |
| 16 | +vehicleThermal.AConoff = 1; % Set AC compressor on/off |
| 17 | +%% Vehicle Cabin |
| 18 | + |
| 19 | +vehicleThermal.cabin_duct_area = 0.04; % [m^2] Air duct cross-sectional area |
| 20 | +vehicleThermal.cabin_duct_volume= 0.0015; % [m^3] Aier duct volume |
| 21 | +vehicleThermal.cabin_perPersonCO2 = 0.01; % [g/s] Adult CO2 exhale rate |
| 22 | +vehicleThermal.cabin_perPersonMoisture = 0.04; % [g/s] Adult moisture exhale rate |
| 23 | +vehicleThermal.cabin_perPersonHeat = 70; % Average heat tranfer from human body |
| 24 | +vehicleThermal.cabin_exhaleTemperature = 30; % [degC] Adult exhale air temperature |
| 25 | +vehicleThermal.cabin_numberPassanger = 1; % Number of onboard passangers |
| 26 | +vehicleThermal.cabin_airRecirculation = 0.5; % Cabin air recirculation |
| 27 | + |
| 28 | +%% Liquid Coolant System |
| 29 | + |
| 30 | +vehicleThermal.coolant_pipe_D = 0.019; % [m] Coolant pipe diameter |
| 31 | +vehicleThermal.coolant_channel_D = 0.0092; % [m] Coolant jacket channels diameter |
| 32 | +vehicleThermal.coolant_valve_displacement = 0.0063; % [m] Max spool displacement |
| 33 | +vehicleThermal.coolant_valve_offset = 0.001; % [m] Orifice opening offset when spool is neutral |
| 34 | +vehicleThermal.coolant_valve_D_ratio_max = 0.95; % Max orifice diameter to pipe diameter ratio |
| 35 | +vehicleThermal.coolant_valve_D_ratio_min = 1e-3; % Leakage orifice diameter to pipe diameter ratio |
| 36 | +vehicleThermal.pump_displacement = 0.02; % [l/rev] Coolant pump volumetric displacement |
| 37 | +vehicleThermal.pump_speed_max = 1000; % [rpm] Coolant pump max shaft speed |
| 38 | +vehicleThermal.coolant_tank_volume = 2.5 / 2; % [l] Volume of each coolant tank |
| 39 | +vehicleThermal.coolant_tank_area = 0.11^2; % [m^2] Area of one side of coolant tank |
| 40 | +%% Refrigeration System |
| 41 | +vehicleThermal.refrigeration.evapTubeMass = 1; % [kg] |
| 42 | + |
| 43 | +%% Radiator |
| 44 | + |
| 45 | +vehicleThermal.radiator_L = 0.6; % [m] Overall radiator length |
| 46 | +vehicleThermal.radiator_W = 0.015; % [m] Overall radiator width |
| 47 | +vehicleThermal.radiator_H = 0.2; % [m] Overal radiator height |
| 48 | +vehicleThermal.radiator_N_tubes = 25; % Number of coolant tubes |
| 49 | +vehicleThermal.radiator_tube_H = 0.0015; % [m] Height of each coolant tube |
| 50 | +vehicleThermal.radiator_fin_spacing = 0.002; % Fin spacing |
| 51 | +vehicleThermal.radiator_wall_thickness = 1e-4; % [m] Material thickness |
| 52 | +vehicleThermal.radiator_wall_conductivity = 240; % [W/m/K] Material thermal conductivity |
| 53 | + |
| 54 | +vehicleThermal.radiator_gap_H = (vehicleThermal.radiator_H - vehicleThermal.radiator_N_tubes*vehicleThermal.radiator_tube_H) / (vehicleThermal.radiator_N_tubes - 1); % [m] Height between coolant tubes |
| 55 | +vehicleThermal.radiator_air_area_flow = (vehicleThermal.radiator_N_tubes - 1) * vehicleThermal.radiator_L * vehicleThermal.radiator_gap_H; % [m^2] Air flow cross-sectional area |
| 56 | +vehicleThermal.radiator_air_area_primary = 2 * (vehicleThermal.radiator_N_tubes - 1) * vehicleThermal.radiator_W * (vehicleThermal.radiator_L + vehicleThermal.radiator_gap_H); % [m^2] Primary air heat transfer surface area |
| 57 | +vehicleThermal.radiator_N_fins = (vehicleThermal.radiator_N_tubes - 1) * vehicleThermal.radiator_L / vehicleThermal.radiator_fin_spacing; % Total number of fins |
| 58 | +vehicleThermal.radiator_air_area_fins = 2 * vehicleThermal.radiator_N_fins * vehicleThermal.radiator_W * vehicleThermal.radiator_gap_H; % [m^2] Total fin surface area |
| 59 | +vehicleThermal.radiator_tube_Leq = 2*(vehicleThermal.radiator_H + 20*vehicleThermal.radiator_tube_H*vehicleThermal.radiator_N_tubes); % [m] Additional equivalent tube length for losses due to manifold and splits |
| 60 | + |
| 61 | +vehicleThermal.fan_area = 0.25 * 2; % [m^2] Fan flow area (2 fans) |
| 62 | + |
| 63 | +%% Workspace variables |
| 64 | + |
| 65 | + |
| 66 | + |
| 67 | + |
0 commit comments