Skip to content

Commit 30b8e31

Browse files
committed
fix: remove last sorry
1 parent 66808dc commit 30b8e31

File tree

1 file changed

+4
-16
lines changed

1 file changed

+4
-16
lines changed

HoTTLean/ForMathlib/CategoryTheory/Bicategory/Grothendieck.lean

Lines changed: 4 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -56,24 +56,12 @@ section
5656
variable {B : Type u₁} [Bicategory B]
5757
variable (F : Pseudofunctor B Cat) {a b : B}
5858

59-
6059
@[simp] lemma _root_.CategoryTheory.LocallyDiscrete.Iso.hom_inv {C : Type u₁} [Category C]
6160
(X Y : LocallyDiscrete C) (e : X ≅ Y) : e.hom.toLoc ≫ e.inv.toLoc = 𝟙 _ :=
6261
LocallyDiscrete.eq_of_hom ⟨⟨by simp⟩⟩
6362

64-
-- Autogenerated by adding @[to_app (attr := reassoc)] to `StrongTrans.naturality_comp_inv`
65-
def StrongTrans.naturality_comp_inv_app_assoc
66-
{B : Type*} [Bicategory B]
67-
{F G : Pseudofunctor B Cat} (α : F ⟶ G) {a b c : B} (f : a ⟶ b) (g : b ⟶ c)
68-
(X : ↑(F.obj a)) {Z : ↑(G.obj c)} (h : (F.map (f ≫ g) ≫ α.app c).obj X ⟶ Z) :
69-
(α.naturality (f ≫ g)).inv.app X ≫ h =
70-
(G.mapComp f g).hom.app ((α.app a).obj X) ≫
71-
(α_ (α.app a) (G.map f) (G.map g)).inv.app X ≫
72-
(G.map g).map ((α.naturality f).inv.app X) ≫
73-
(α_ (F.map f) (α.app b) (G.map g)).hom.app X ≫
74-
(α.naturality g).inv.app ((F.map f).obj X) ≫
75-
(α_ (F.map f) (F.map g) (α.app c)).inv.app X ≫ (α.app c).map ((F.mapComp f g).inv.app X) ≫ h :=
76-
sorry
63+
attribute [reassoc] StrongTrans.naturality_comp_inv_app
64+
7765
end
7866

7967
lemma _root_.CategoryTheory.Functor.toPseudofunctor'_map₂ {C : Type u₁} [Category.{v₁} C] (F : C ⥤ Cat)
@@ -1191,7 +1179,7 @@ include hom_id in
11911179
lemma functorFromCompHom_id (c : C) : functorFromCompHom fib hom G (𝟙 c)
11921180
= eqToHom (by simp [Cat.id_eq_id, Functor.id_comp]) := by
11931181
ext x
1194-
simp [hom_id, eqToHom_map, functorFromCompHom]
1182+
simp [hom_id, functorFromCompHom]
11951183

11961184
include hom_comp in
11971185
lemma functorFromCompHom_comp (c₁ c₂ c₃ : C) (f : c₁ ⟶ c₂) (g : c₂ ⟶ c₃):
@@ -1200,7 +1188,7 @@ lemma functorFromCompHom_comp (c₁ c₂ c₃ : C) (f : c₁ ⟶ c₂) (g : c₂
12001188
Functor.whiskerLeft (F.map f) (functorFromCompHom fib hom G g) ≫
12011189
eqToHom (by simp[Cat.comp_eq_comp, Functor.map_comp, Functor.assoc]) := by
12021190
ext
1203-
simp [functorFromCompHom, hom_comp, eqToHom_map]
1191+
simp [functorFromCompHom, hom_comp]
12041192

12051193
theorem functorFrom_comp : functorFrom fib hom hom_id hom_comp ⋙ G =
12061194
functorFrom (functorFromCompFib fib G) (functorFromCompHom fib hom G)

0 commit comments

Comments
 (0)