@@ -448,9 +448,9 @@ lemma substConsEv_comp_substWk : P0.substConsEv (A := σ ≫ A) (σ ≫ a) (by s
448448 simp [substConsEv, ← path_comp, substWk]
449449
450450@[reassoc]
451- lemma I_map_reflSubst_comp_substConsEv : cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫
451+ lemma I_map_reflInst_comp_substConsEv : cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫
452452 P0.substConsEv a a_tp = cyl.π.app Γ ≫ U0.sec A a a_tp := by
453- apply (disp_pullback ..).hom_ext <;> simp [substConsEv, reflSubst , ← path_comp]
453+ apply (disp_pullback ..).hom_ext <;> simp [substConsEv, reflInst , ← path_comp, motiveInst ]
454454
455455/-- An auxiliary definition for `connection`. -/
456456def connectionLift : cyl.I.obj (P0.polymorphicIdIntro.motiveCtx a a_tp) ⟶ U0.Tm :=
@@ -478,15 +478,15 @@ lemma connectionLift_comp [hrwcz0.IsUniform] :
478478 erw [← P0.substConsEv_comp_substWk_assoc]
479479 simp [← Id_comp]
480480
481- lemma I_map_reflSubst_comp_connectionLift [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
482- cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫ P0.connectionLift hrwcz0 a a_tp =
481+ lemma I_map_reflInst_comp_connectionLift [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
482+ cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫ P0.connectionLift hrwcz0 a a_tp =
483483 P0.unPath (A := cyl.π.app Γ ≫ A) (cyl.π.app _ ≫ cyl.π.app Γ ≫ a) (by simp [a_tp]) := by
484484 simp only [connectionLift]
485485 rw [← Hurewicz.lift_comp]
486486 rw [hrwcz0.isNormal _ _ _ (U0.sec A a a_tp ≫ P0.Id (A := U0.disp A ≫ A) (U0.disp A ≫ a)
487487 (U0.var A) (by simp [a_tp]) (by simp))]
488- · simp [← unPath_comp, reflSubst ]
489- · simp [I_map_reflSubst_comp_substConsEv_assoc ]
488+ · simp [← unPath_comp, reflInst, motiveInst ]
489+ · simp [I_map_reflInst_comp_substConsEv_assoc ]
490490
491491/-- Fix `Γ ⊢ a : A`, we think of `connection` as a cubical (as opposed to globular)
492492homotopy `(i j : I);(x : A)(p : Id(a,x)) ⊢ χ i j : A`
@@ -541,16 +541,16 @@ lemma connection_comp [hrwcz0.IsUniform] :
541541 rw! [connectionLift_comp _ _ _ _ a_tp]
542542 simp [← path_comp, motiveSubst]
543543
544- lemma I_map_I_map_reflSubst_comp_connection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
545- cyl.I.map (cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp)) ≫ P0.connection hrwcz0 a a_tp =
544+ lemma I_map_I_map_reflInst_comp_connection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
545+ cyl.I.map (cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp)) ≫ P0.connection hrwcz0 a a_tp =
546546 cyl.π.app (cyl.I.obj Γ) ≫ cyl.π.app Γ ≫ a := by
547547 simp only [connection, path']
548548 fapply P0.path_ext
549- (cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.disp A ≫ A)
550- (cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.disp A ≫ a)
551- (cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.var A)
552- <;> simp [a_tp, ← path_comp, reflSubst ]
553- erw [I_map_reflSubst_comp_connectionLift ]
549+ (cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.disp A ≫ A)
550+ (cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.disp A ≫ a)
551+ (cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫ P0.substConsEv a a_tp ≫ U0.var A)
552+ <;> simp [a_tp, ← path_comp, reflInst, motiveInst ]
553+ erw [I_map_reflInst_comp_connectionLift ]
554554
555555/-- `symmConnection` is the symmetrically flipped homotopy `j i ⊢ χ i j` (of `connection`),
556556visualised as
@@ -601,12 +601,12 @@ lemma I_δ1_symmConnection : cyl.I.map (cyl.δ1.app _) ≫ P0.symmConnection hrw
601601 I_map_δ1_app_comp_symm_app_assoc]
602602 erw [δ1_connection] -- FIXME
603603
604- lemma I_map_I_map_reflSubst_comp_symmConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
605- cyl.I.map (cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp)) ≫
604+ lemma I_map_I_map_reflInst_comp_symmConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
605+ cyl.I.map (cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp)) ≫
606606 P0.symmConnection hrwcz0 a a_tp = cyl.π.app (cyl.I.obj Γ) ≫ cyl.π.app Γ ≫ a := by
607607 simp only [symmConnection]
608608 erw [cyl.symm.naturality_assoc]
609- simp [I_map_I_map_reflSubst_comp_connection , symm_π_π'_app_assoc]
609+ simp [I_map_I_map_reflInst_comp_connection , symm_π_π'_app_assoc]
610610
611611lemma symmConnection_comp [hrwcz0.IsUniform] :
612612 P0.symmConnection hrwcz0 (A := σ ≫ A) (σ ≫ a) (by simp [a_tp]) =
@@ -653,13 +653,13 @@ lemma unPathSymmConnection_comp [hrwcz0.IsUniform] :
653653 P0.unPathSymmConnection hrwcz0 a a_tp := by
654654 simp [unPathSymmConnection, ← unPath_comp, symmConnection_comp _ _ _ _ a_tp, motiveSubst]
655655
656- lemma I_map_reflSubst_comp_unPathSymmConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
657- cyl.I.map (P0.polymorphicIdIntro.reflSubst a a_tp) ≫ P0.unPathSymmConnection hrwcz0 a a_tp =
656+ lemma I_map_reflInst_comp_unPathSymmConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
657+ cyl.I.map (P0.polymorphicIdIntro.reflInst a a_tp) ≫ P0.unPathSymmConnection hrwcz0 a a_tp =
658658 cyl.π.app Γ ≫ P0.unPath (A := A) (cyl.π.app Γ ≫ a) (by simp [a_tp]) := by
659659 simp only [unPathSymmConnection, ← unPath_comp]
660660 congr 1
661- · simp [reflSubst ]
662- · simp [I_map_I_map_reflSubst_comp_symmConnection ]
661+ · simp [reflInst, motiveInst ]
662+ · simp [I_map_I_map_reflInst_comp_symmConnection ]
663663
664664/-- Fixing `Γ ⊢ a : A`, `substConnection` is thought of as a substitution
665665`(i : I); (x : A) (p : Id(a,x)) ⊢ (α i : A, β i : Id (a, α i))`
@@ -687,7 +687,7 @@ lemma substConnection_var : P0.substConnection hrwcz0 a a_tp ≫ var .. =
687687
688688@ [reassoc (attr := simp)]
689689lemma δ0_substConnection : cyl.δ0 .app _ ≫ P0.substConnection hrwcz0 a a_tp =
690- disp .. ≫ disp .. ≫ reflSubst _ a a_tp := by
690+ disp .. ≫ disp .. ≫ reflInst _ a a_tp := by
691691 simp only [polymorphicIdIntro_Id, Functor.id_obj, motiveCtx, substConnection, comp_substCons,
692692 δ0_π'_app_assoc, ← cyl.δ1_naturality_assoc, polymorphicIdIntro_refl]
693693 rw! (transparency := .default) [δ0_unPathSymmConnection]
@@ -728,46 +728,46 @@ lemma substConnection_comp_motiveSubst [hrwcz0.IsUniform] :
728728
729729/-- `substConnection` is *normal* . -/
730730@[reassoc]
731- lemma reflSubst_comp_substConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
732- cyl.I.map (reflSubst _ a a_tp) ≫
733- P0.substConnection hrwcz0 a a_tp = cyl.π.app _ ≫ reflSubst _ a a_tp := by
731+ lemma reflInst_comp_substConnection [hrwcz0.IsUniform] [hrwcz0.IsNormal] :
732+ cyl.I.map (reflInst _ a a_tp) ≫
733+ P0.substConnection hrwcz0 a a_tp = cyl.π.app _ ≫ reflInst _ a a_tp := by
734734 simp only [substConnection]
735735 apply (disp_pullback ..).hom_ext
736- · simp [I_map_reflSubst_comp_unPathSymmConnection ]
736+ · simp [I_map_reflInst_comp_unPathSymmConnection ]
737737 · apply (disp_pullback ..).hom_ext
738- · simp [← δ1_naturality_assoc, I_map_I_map_reflSubst_comp_symmConnection ]
739- · simp [reflSubst ]
738+ · simp [← δ1_naturality_assoc, I_map_I_map_reflInst_comp_symmConnection ]
739+ · simp [reflInst, motiveInst ]
740740
741741end connection
742742
743743def polymorphicIdElim (hrwcz0 : Hurewicz cyl U0.tp) [hrwcz0.IsUniform] [hrwcz0.IsNormal]
744744 (U1 : UnstructuredUniverse Ctx) (hrwcz1 : Hurewicz cyl U1.tp) [Hurewicz.IsUniform hrwcz1]
745745 [Hurewicz.IsNormal hrwcz1] : PolymorphicIdElim (polymorphicIdIntro P0) U1 where
746- j a a_tp C c c_tp := cyl.δ1 .app _ ≫ hrwcz1.lift (disp .. ≫ disp .. ≫ c)
746+ jElim a a_tp C c c_tp := cyl.δ1 .app _ ≫ hrwcz1.lift (disp .. ≫ disp .. ≫ c)
747747 (substConnection P0 hrwcz0 a a_tp ≫ C) (by rw [δ0_substConnection_assoc]; simp [c_tp]) -- FIXME simp failed
748- comp_j σ A a a_tp C c c_tp := by
748+ jElim_comp σ A a a_tp C c c_tp := by
749749 slice_rhs 1 2 => rw [← δ1_naturality]
750750 slice_rhs 2 3 => rw [← hrwcz1.lift_comp]
751751 congr 2
752752 · simp [motiveSubst, substWk_disp_assoc]
753753 · rw [substConnection_comp_motiveSubst_assoc]
754- j_tp a a_tp C c c_tp := by
754+ jElim_tp a a_tp C c c_tp := by
755755 simp only [motiveCtx, polymorphicIdIntro_Id, Category.assoc, Hurewicz.lift_comp_self']
756756 erw [δ1_substConnection_assoc] -- FIXME simp, rw failed
757- reflSubst_j {Γ A} a a_tp C c c_tp := calc _
758- _ = cyl.δ1 .app Γ ≫ cyl.I.map (reflSubst _ a a_tp) ≫
757+ reflSubst_jElim {Γ A} a a_tp C c c_tp := calc _
758+ _ = cyl.δ1 .app Γ ≫ cyl.I.map (reflInst _ a a_tp) ≫
759759 hrwcz1.lift (U0.disp (weakenId _ a a_tp) ≫ U0.disp A ≫ c)
760760 (P0.substConnection hrwcz0 a a_tp ≫ C) _ := by
761761 rw [← δ1_naturality_assoc]
762762 _ = cyl.δ1 .app Γ ≫
763763 hrwcz1.lift
764- (reflSubst _ a a_tp ≫ disp .. ≫ disp .. ≫ c)
765- (cyl.I.map (reflSubst _ a a_tp) ≫ P0.substConnection hrwcz0 a a_tp ≫ C) _ := by
764+ (reflInst _ a a_tp ≫ disp .. ≫ disp .. ≫ c)
765+ (cyl.I.map (reflInst _ a a_tp) ≫ P0.substConnection hrwcz0 a a_tp ≫ C) _ := by
766766 rw [← Hurewicz.lift_comp]
767- _ = cyl.δ1 .app Γ ≫ cyl.π.app Γ ≫ P0.polymorphicIdIntro.reflSubst a a_tp ≫
767+ _ = cyl.δ1 .app Γ ≫ cyl.π.app Γ ≫ P0.polymorphicIdIntro.reflInst a a_tp ≫
768768 U0.disp (P0.polymorphicIdIntro.weakenId a a_tp) ≫ U0.disp A ≫ c := by
769- rw [Hurewicz.isNormal hrwcz1 _ _ _ (P0.polymorphicIdIntro.reflSubst a a_tp ≫ C)]
770- rw [reflSubst_comp_substConnection_assoc ]
771- _ = c := by simp [reflSubst ]
769+ rw [Hurewicz.isNormal hrwcz1 _ _ _ (P0.polymorphicIdIntro.reflInst a a_tp ≫ C)]
770+ rw [reflInst_comp_substConnection_assoc ]
771+ _ = c := by simp [reflInst, motiveInst ]
772772
773773end Path
0 commit comments