|
1 | 1 | - title: >- |
2 | 2 | Sintel: A Machine Learning Framework to Extract Insights from Signals |
3 | 3 | subtitle: >- |
4 | | - Sarah Alnegheimish, Dongyu Liu, Carles Sala, Laure Berti-Equille, Kalyan Veeramachaneni |
| 4 | + Sarah Alnegheimish, Dongyu Liu, Carles Sala, Laure Berti-Équille, Kalyan Veeramachaneni |
5 | 5 | tag: SIGMOD |
6 | | - tag_text: International Conference on Management of Data, 2022 |
| 6 | + tag_text: ACM SIGMOD/PODS International Conference on Management of Data, 2022 |
7 | 7 | image: /images/publications/sintel.png |
8 | 8 | links: |
9 | | - - name: "pdf" |
10 | | - url: "" |
11 | | - - name: "talk" |
12 | | - url: "" |
13 | 9 | - name: "code" |
14 | | - url: "" |
15 | | - - name: "media" |
16 | | - url: "" |
17 | | - - name: "blog" |
18 | | - url: "" |
19 | | - - name: "bib" |
20 | | - url: "" |
| 10 | + url: "https://github.com/sintel-dev" |
21 | 11 | - title: >- |
22 | 12 | MTV: Visual Analytics for Detecting, Investigating, and Annotating Anomalies in Multivariate Time Series |
23 | 13 | subtitle: >- |
|
27 | 17 | image: /images/publications/mtv.png |
28 | 18 | links: |
29 | 19 | - name: "pdf" |
30 | | - url: "" |
31 | | - - name: "talk" |
32 | | - url: "" |
33 | | - - name: "code" |
34 | | - url: "" |
35 | | - - name: "media" |
36 | | - url: "" |
37 | | - - name: "blog" |
38 | | - url: "" |
| 20 | + url: "https://dl.acm.org/doi/pdf/10.1145/3512950" |
39 | 21 | - name: "bib" |
40 | | - url: "" |
| 22 | + url: "http://dongyu.tech/resource/bib/mtv_2021_cscw.html" |
| 23 | + - name: "code" |
| 24 | + url: "https://github.com/sintel-dev/MTV" |
| 25 | + - name: "video" |
| 26 | + url: "https://dai.lids.mit.edu/wp-content/uploads/2022/04/cscw-mtv.mp4" |
| 27 | + |
41 | 28 | - title: >- |
42 | 29 | TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks |
43 | 30 | subtitle: >- |
44 | 31 | Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, Kalyan Veeramachaneni |
45 | 32 | tag: BigData |
46 | 33 | tag_text: IEEE International Conference on BigData, 2020 |
47 | 34 | image: /images/publications/tadgan.svg |
48 | | - cta_text: GitHub stars > 450 |
49 | | - cta_url: "https://ieeexplore.ieee.org/abstract/document/9552849" |
| 35 | + cta_text: GitHub stars > 600 |
| 36 | + cta_url: "https://github.com/sintel-dev/Orion" |
50 | 37 | links: |
51 | 38 | - name: "pdf" |
52 | | - url: "" |
| 39 | + url: "http://dongyu.tech/resource/paper/tadgan_2020_ieeebigdata.pdf" |
| 40 | + - name: "bib" |
| 41 | + url: "http://dongyu.tech/resource/bib/tadgan_2020_ieeebigdata.html" |
53 | 42 | - name: "talk" |
54 | | - url: "" |
| 43 | + url: "https://www.youtube.com/watch?v=jIDj2dhU99k" |
55 | 44 | - name: "code" |
56 | | - url: "" |
57 | | - - name: "media" |
58 | | - url: "" |
| 45 | + url: "https://github.com/sintel-dev/Orion" |
| 46 | + - name: "news" |
| 47 | + url: "https://news.mit.edu/2020/warning-time-measurements-ai-1217" |
59 | 48 | - name: "blog" |
60 | | - url: "" |
61 | | - - name: "bib" |
62 | | - url: "" |
| 49 | + url: "https://medium.com/mit-data-to-ai-lab/time-series-anomaly-detection-in-the-era-of-deep-learning-f0237902224a" |
63 | 50 |
|
64 | 51 |
|
0 commit comments