Skip to content

Commit bae05ed

Browse files
authored
Merge pull request #130 from dwijenchawra/master
Fix for #121
2 parents b700d78 + dc240d6 commit bae05ed

10 files changed

+13
-13
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
2626

2727

2828
[compat]
29-
DataFrames = "0.21,0.22"
29+
DataFrames = "0.22,1.0,1.1"
3030
DataStructures = "0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18"
3131
Discretizers = "3.0"
3232
Distributions = "0.17,0.18,0.19,0.20,0.21,0.22,0.23,0.24"

src/DiscreteBayesNet/discrete_bayes_net.jl

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -244,7 +244,7 @@ function statistics(dag::DAG, data::DataFrame)
244244

245245
parents = [inneighbors(dag, i) for i in 1:n]
246246
ncategories = [Int(infer_number_of_instantiations(data[!,i])) for i in 1 : n]
247-
datamat = convert(Matrix{Int}, data)'
247+
datamat = Matrix{Int}(data)'
248248

249249
statistics(parents, ncategories, datamat)
250250
end
@@ -255,8 +255,7 @@ function statistics(bn::DiscreteBayesNet, target::NodeName, data::DataFrame)
255255
targetind = bn.name_to_index[target]
256256
parents = inneighbors(bn.dag, targetind)
257257
ncategories = [Int(infer_number_of_instantiations(data[!,i])) for i in 1 : n]
258-
datamat = convert(Matrix{Int}, data)'
259-
258+
datamat = Matrix{Int}(data)'
260259
statistics(targetind, parents, ncategories, datamat)
261260
end
262261

src/DiscreteBayesNet/greedy_hill_climbing.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ function Distributions.fit(::Type{DiscreteBayesNet}, data::DataFrame, params::Gr
6565

6666
n = ncol(data)
6767
parent_list = map!(i->Int[], Array{Vector{Int}}(undef, n), 1:n)
68-
datamat = convert(Matrix{Int}, data)'
68+
datamat = Matrix{Int}(data)'
6969
score_components = bayesian_score_components(parent_list, ncategories, datamat, params.prior, params.cache)
7070

7171
while true

src/DiscreteBayesNet/greedy_thick_thinning.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ function Distributions.fit(::Type{DiscreteBayesNet}, data::DataFrame, params::Gr
2020

2121
n = ncol(data)
2222
parent_list = map!(i->Int[], Array{Vector{Int}}(n), 1:n)
23-
datamat = convert(Matrix{Int}, data)'
23+
datamat = Matrix{Int}(data)'
2424
score_components = bayesian_score_components(parent_list, ncategories, datamat, params.prior, params.cache)
2525

2626
while true

src/DiscreteBayesNet/scan_greedy_hill_climbing.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ function Distributions.fit(::Type{DiscreteBayesNet}, data::DataFrame, params::Sc
8787

8888
n = ncol(data)
8989
parent_list = map!(i->Int[], Array{Vector{Int}}(undef, n), 1:n)
90-
datamat = convert(Matrix{Int}, data)'
90+
datamat = Matrix{Int}(data)'
9191
score_components = bayesian_score_components(parent_list, ncategories, datamat, params.prior, params.cache)
9292

9393
# 0 depth

src/DiscreteBayesNet/structure_scoring.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ function bayesian_score(bn::DiscreteBayesNet, data::DataFrame, prior::DirichletP
111111
n = length(bn)
112112
parent_list = Array{Vector{Int}}(undef, n)
113113
ncategories = Array{Int}(undef, n)
114-
datamat = convert(Matrix{Int}, data)'
114+
datamat = Matrix{Int}(data)'
115115

116116
for (i,cpd) in enumerate(bn.cpds)
117117
parent_list[i] = inneighbors(bn.dag, i)
@@ -168,7 +168,7 @@ function bayesian_score_components(bn::DiscreteBayesNet, data::DataFrame, prior:
168168
n = length(bn)
169169
parent_list = Array{Vector{Int}}(undef, n)
170170
ncategories = Array{Int}(undef, n)
171-
datamat = convert(Matrix{Int}, data)'
171+
datamat = Matrix{Int}(data)'
172172

173173
for (i,cpd) in enumerate(bn.cpds)
174174
parent_list[i] = inneighbors(bn.dag, i)

src/Factors/factors_dataframes.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
Convert a Factor to a DataFrame
88
"""
99
function Base.convert(::Type{DataFrame}, ϕ::Factor)
10-
df = DataFrames.DataFrame(pattern(ϕ))
10+
df = DataFrames.DataFrame(pattern(ϕ), :auto)
1111
DataFrames.rename!(df, [f => t for (f, t) = zip(names(df), names(ϕ))] )
1212
df[!,:potential] = ϕ.potential[:]
1313

src/gibbs.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -241,7 +241,7 @@ function gibbs_sample_main_loop(
241241

242242
end
243243

244-
return convert(DataFrame, t), (now() - start_time).value
244+
return DataFrame(t), (now() - start_time).value
245245
end
246246

247247
"""

src/sampling.jl

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -169,7 +169,8 @@ function get_weighted_dataframe(bn::BayesNet, nsamples::Integer, evidence::Assig
169169
end
170170
t[:p] = w / sum(w)
171171

172-
convert(DataFrame, t)
172+
173+
t = DataFrame(t)
173174
end
174175

175176
get_weighted_dataframe(bn::BayesNet, nsamples::Integer, pair::Pair{NodeName}...) =

test/test_discrete_bayes_nets.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ let
3030
n = length(bn)
3131
parent_list = Array{Vector{Int}}(undef, n)
3232
bincounts = Array{Int}(undef, n)
33-
datamat = convert(Matrix{Int}, data)'
33+
datamat = Matrix{Int}(data)'
3434

3535
for (i,cpd) in enumerate(bn.cpds)
3636
parent_list[i] = inneighbors(bn.dag, i)

0 commit comments

Comments
 (0)