|
1 | | -import time, threading |
2 | 1 |
|
3 | | -def run_basic(video_path:str): |
4 | | - # Quick metadata |
5 | | - return {"duration": 123.0} |
| 2 | +import threading |
| 3 | +import yaml |
| 4 | +import traceback |
| 5 | +from src.processors.video_analyzer import VideoAnalyzer |
| 6 | +from src.processors.audio_analyzer import AudioAnalyzer |
| 7 | +from src.processors.scene_detector import SceneDetector |
| 8 | +from src.ai_models.emotion_detector import EmotionDetector |
| 9 | +from src.ai_models.intelligent_content_analyzer import IntelligentContentAnalyzer |
| 10 | +from src.suggestions.cut_suggester import CutSuggester |
| 11 | +import os |
6 | 12 |
|
7 | | -def run_deep(video_path:str): |
8 | | - # Simulate heavy analysis |
9 | | - time.sleep(1.2) |
10 | | - return { |
11 | | - "emotions": {"happy":0.62,"neutral":0.25,"sad":0.13}, |
12 | | - "objects": [{"label":"person","confidence":0.94}], |
13 | | - "cut_suggestions":[{"timestamp":28.4,"reason":"Scene shift","confidence":0.78}] |
14 | | - } |
| 13 | +def load_config(): |
| 14 | + with open(os.path.join(os.path.dirname(__file__), '../config.yaml'), 'r', encoding='utf-8') as f: |
| 15 | + return yaml.safe_load(f) |
| 16 | + |
| 17 | +def run_basic(video_path:str, config): |
| 18 | + # Quick metadata using VideoAnalyzer |
| 19 | + try: |
| 20 | + va = VideoAnalyzer(config) |
| 21 | + meta = va.get_video_metadata(video_path) |
| 22 | + return {"duration": meta.get("duration", 0), "status": "basic_ready"} |
| 23 | + except Exception as e: |
| 24 | + return {"duration": 0, "error": str(e), "status": "basic_failed"} |
| 25 | + |
| 26 | +def run_deep(video_path:str, config): |
| 27 | + # Full pipeline: video, audio, scene, emotion, content, cut suggestions |
| 28 | + try: |
| 29 | + va = VideoAnalyzer(config) |
| 30 | + aa = AudioAnalyzer(config) |
| 31 | + sd = SceneDetector(config) |
| 32 | + ed = EmotionDetector(config) |
| 33 | + ca = IntelligentContentAnalyzer(config) |
| 34 | + cs = CutSuggester(config) |
| 35 | + |
| 36 | + # Video analysis |
| 37 | + video_meta = va.get_video_metadata(video_path) |
| 38 | + video_timeline = va.analyze_video_timeline(video_path) |
| 39 | + |
| 40 | + # Audio extraction and analysis |
| 41 | + audio_path = aa.extract_audio_from_video(video_path) |
| 42 | + audio_features = aa.extract_audio_features(audio_path) |
| 43 | + speech_emotions = aa.analyze_speech_emotion(audio_path) |
| 44 | + speaker_changes = aa.detect_speaker_changes(audio_path) |
| 45 | + energy_timeline = aa.analyze_audio_energy(audio_path) |
| 46 | + |
| 47 | + # Scene detection |
| 48 | + scenes = sd.detect_scenes(video_path, method='combined') |
| 49 | + |
| 50 | + # Emotion detection (fuse text/audio/visual if available) |
| 51 | + # For demo, use only speech_emotions and visual features |
| 52 | + emotion_scores = {} |
| 53 | + if speech_emotions: |
| 54 | + # Use dominant emotion per chunk |
| 55 | + for seg in speech_emotions: |
| 56 | + for k, v in seg.get('all_emotions', {}).items(): |
| 57 | + emotion_scores[k] = emotion_scores.get(k, 0) + v |
| 58 | + # Normalize |
| 59 | + total = sum(emotion_scores.values()) |
| 60 | + if total > 0: |
| 61 | + emotion_scores = {k: v/total for k, v in emotion_scores.items()} |
| 62 | + else: |
| 63 | + emotion_scores = {"neutral": 1.0} |
| 64 | + |
| 65 | + # Content analysis |
| 66 | + content_analysis = ca.analyze_content( |
| 67 | + video_path, |
| 68 | + audio_or_text={"features": audio_features, "speech_emotions": speech_emotions, "energy_timeline": energy_timeline}, |
| 69 | + visual_or_metadata=video_timeline |
| 70 | + ) |
| 71 | + |
| 72 | + # Cut suggestions |
| 73 | + video_analysis = { |
| 74 | + "scene_changes": scenes, |
| 75 | + "timeline": video_timeline |
| 76 | + } |
| 77 | + audio_analysis = { |
| 78 | + "features": audio_features, |
| 79 | + "speech_emotions": speech_emotions, |
| 80 | + "speaker_changes": speaker_changes, |
| 81 | + "energy_timeline": energy_timeline |
| 82 | + } |
| 83 | + script_analysis = {} # Placeholder for future script/subtitle analysis |
| 84 | + cut_suggestions = cs.generate_suggestions(video_analysis, script_analysis, audio_analysis) |
| 85 | + |
| 86 | + # Objects (from video timeline visual features) |
| 87 | + objects = [] |
| 88 | + if video_timeline.get('visual_features'): |
| 89 | + # For demo, treat high-confidence visual concepts as objects |
| 90 | + for feats in video_timeline['visual_features']: |
| 91 | + for k, v in feats.items(): |
| 92 | + if v > 0.7: |
| 93 | + objects.append({"label": k, "confidence": v}) |
| 94 | + # Deduplicate |
| 95 | + seen = set() |
| 96 | + unique_objects = [] |
| 97 | + for o in objects: |
| 98 | + if o['label'] not in seen: |
| 99 | + unique_objects.append(o) |
| 100 | + seen.add(o['label']) |
| 101 | + |
| 102 | + # Clean up temp audio |
| 103 | + try: |
| 104 | + aa.cleanup_temp_files([audio_path]) |
| 105 | + except Exception: |
| 106 | + pass |
| 107 | + |
| 108 | + return { |
| 109 | + "duration": video_meta.get("duration", 0), |
| 110 | + "emotions": emotion_scores, |
| 111 | + "objects": unique_objects, |
| 112 | + "cut_suggestions": [dict(timestamp=s.timestamp, reason=s.reason, confidence=s.confidence) for s in cut_suggestions], |
| 113 | + "scene_changes": scenes, |
| 114 | + "content": content_analysis, |
| 115 | + "status": "deep_ready" |
| 116 | + } |
| 117 | + except Exception as e: |
| 118 | + return {"error": str(e), "traceback": traceback.format_exc(), "status": "deep_failed"} |
15 | 119 |
|
16 | 120 | class VideoPipeline: |
17 | 121 | def __init__(self, on_partial, on_complete): |
18 | 122 | self.on_partial = on_partial |
19 | 123 | self.on_complete = on_complete |
| 124 | + self.config = load_config() |
20 | 125 |
|
21 | 126 | def start(self, video_path:str): |
22 | 127 | def worker(): |
23 | | - basic = run_basic(video_path) |
| 128 | + basic = run_basic(video_path, self.config) |
24 | 129 | self.on_partial(basic) |
25 | | - deep = run_deep(video_path) |
| 130 | + deep = run_deep(video_path, self.config) |
26 | 131 | self.on_complete(deep) |
27 | 132 | threading.Thread(target=worker, daemon=True).start() |
0 commit comments