@@ -12,53 +12,47 @@ some libraries use to interoperate with Snowpark pandas to the same level of sup
1212plotly.express
1313==============
1414
15- The following table is structured as follows: The first column contains the name of a method in the ``plotly.express `` module.
16- The second column is a flag for whether or not interoperability is guaranteed with Snowpark pandas. For each of these
17- operations, we validate that passing in Snowpark pandas dataframes or series as the data inputs behaves equivalently
18- to passing in pandas dataframes or series.
19-
20- .. note ::
21- ``Y `` stands for yes, i.e., interoperability is guaranteed with this method, and ``N `` stands for no.
22-
15+ For each of the following methods in the ``plotly.express `` module, we validate that passing in Snowpark pandas
16+ dataframes or series as the data inputs behaves equivalently to passing in pandas dataframes or series.
2317
2418.. note ::
2519 Currently only plotly versions <6.0.0 are supported through the dataframe interchange protocol.
2620
27- +-------------------------+---------------------------------------------+--------------------------------------------+
28- | Method name | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
29- +-------------------------+---------------------------------------------+--------------------------------------------+
30- | ``scatter `` | Y | |
31- +-------------------------+---------------------------------------------+--------------------------------------------+
32- | ``line `` | Y | |
33- +-------------------------+---------------------------------------------+--------------------------------------------+
34- | ``area `` | Y | |
35- +-------------------------+---------------------------------------------+--------------------------------------------+
36- | ``timeline `` | Y | |
37- +-------------------------+---------------------------------------------+--------------------------------------------+
38- | ``violin `` | Y | |
39- +-------------------------+---------------------------------------------+--------------------------------------------+
40- | ``bar `` | Y | |
41- +-------------------------+---------------------------------------------+--------------------------------------------+
42- | ``histogram `` | Y | |
43- +-------------------------+---------------------------------------------+--------------------------------------------+
44- | ``pie `` | Y | |
45- +-------------------------+---------------------------------------------+--------------------------------------------+
46- | ``treemap `` | Y | |
47- +-------------------------+---------------------------------------------+--------------------------------------------+
48- | ``sunburst `` | Y | |
49- +-------------------------+---------------------------------------------+--------------------------------------------+
50- | ``icicle `` | Y | |
51- +-------------------------+---------------------------------------------+--------------------------------------------+
52- | ``scatter_matrix `` | Y | |
53- +-------------------------+---------------------------------------------+--------------------------------------------+
54- | ``funnel `` | Y | |
55- +-------------------------+---------------------------------------------+--------------------------------------------+
56- | ``density_heatmap `` | Y | |
57- +-------------------------+---------------------------------------------+--------------------------------------------+
58- | ``boxplot `` | Y | |
59- +-------------------------+---------------------------------------------+--------------------------------------------+
60- | ``imshow `` | Y | |
61- +-------------------------+---------------------------------------------+--------------------------------------------+
21+ +-------------------------+
22+ | Method name |
23+ +-------------------------+
24+ | ``scatter `` |
25+ +-------------------------+
26+ | ``line `` |
27+ +-------------------------+
28+ | ``area `` |
29+ +-------------------------+
30+ | ``timeline `` |
31+ +-------------------------+
32+ | ``violin `` |
33+ +-------------------------+
34+ | ``bar `` |
35+ +-------------------------+
36+ | ``histogram `` |
37+ +-------------------------+
38+ | ``pie `` |
39+ +-------------------------+
40+ | ``treemap `` |
41+ +-------------------------+
42+ | ``sunburst `` |
43+ +-------------------------+
44+ | ``icicle `` |
45+ +-------------------------+
46+ | ``scatter_matrix `` |
47+ +-------------------------+
48+ | ``funnel `` |
49+ +-------------------------+
50+ | ``density_heatmap `` |
51+ +-------------------------+
52+ | ``boxplot `` |
53+ +-------------------------+
54+ | ``imshow `` |
55+ +-------------------------+
6256
6357
6458scikit-learn
@@ -67,15 +61,10 @@ scikit-learn
6761We break down scikit-learn interoperability by categories of scikit-learn
6862operations.
6963
70- For each category, we provide a table of interoperability with the following
71- structure: The first column describes a scikit-learn operation that may include
72- multiple method calls. The second column is a flag for whether or not
73- interoperability is guaranteed with Snowpark pandas. For each of these methods,
74- we validate that passing in Snowpark pandas objects behaves equivalently to
75- passing in pandas objects.
64+ For each category, we provide scikit-learn operations that may include
65+ multiple method calls. For each of these methods, we validate that passing in Snowpark pandas objects behaves
66+ equivalently to passing in pandas objects.
7667
77- .. note ::
78- ``Y `` stands for yes, i.e., interoperability is guaranteed with this method, and ``N `` stands for no.
7968
8069.. note ::
8170 While some scikit-learn methods accept Snowpark pandas inputs, their
@@ -88,66 +77,69 @@ passing in pandas objects.
8877Classification
8978--------------
9079
91- +--------------------------------------------+---------------------------------------------+---------------------------------+
92- | Operation | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
93- +--------------------------------------------+---------------------------------------------+---------------------------------+
94- | Fitting a ``LinearDiscriminantAnalysis `` | Y | |
95- | classifier with the ``fit() `` method and | | |
96- | classifying data with the ``predict() `` | | |
97- | method. | | |
98- +--------------------------------------------+---------------------------------------------+---------------------------------+
80+ +--------------------------------------------+
81+ | Operation |
82+ +--------------------------------------------+
83+ | Fitting a ``LinearDiscriminantAnalysis `` |
84+ | classifier with the ``fit() `` method and |
85+ | classifying data with the ``predict() `` |
86+ | method |
87+ +--------------------------------------------+
9988
10089
10190Regression
10291----------
10392
104- +--------------------------------------------+---------------------------------------------+---------------------------------+
105- | Operation | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
106- +--------------------------------------------+---------------------------------------------+---------------------------------+
107- | Fitting a ``LogisticRegression `` model | Y | |
108- | with the ``fit() `` method and predicting | | |
109- | results with the ``predict() `` method. | | |
110- +--------------------------------------------+---------------------------------------------+---------------------------------+
93+ +--------------------------------------------+
94+ | Operation |
95+ +--------------------------------------------+
96+ | Fitting a ``LogisticRegression `` model |
97+ | with the ``fit() `` method and predicting |
98+ | results with the ``predict() `` method |
99+ +--------------------------------------------+
111100
112101Clustering
113102----------
114103
115- +--------------------------------------------+---------------------------------------------+---------------------------------+
116- | Clustering method | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
117- +--------------------------------------------+---------------------------------------------+---------------------------------+
118- | ``KMeans.fit() `` | Y | |
119- +--------------------------------------------+---------------------------------------------+---------------------------------+
104+ +--------------------------------------------+
105+ | Clustering method |
106+ +--------------------------------------------+
107+ | ``KMeans.fit() `` |
108+ +--------------------------------------------+
120109
121110
122111Dimensionality reduction
123112------------------------
124113
125- +--------------------------------------------+---------------------------------------------+---------------------------------+
126- | Operation | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
127- +--------------------------------------------+---------------------------------------------+---------------------------------+
128- | Getting the principal components of a | Y | |
129- | numerical dataset with ``PCA.fit() ``. | | |
130- +--------------------------------------------+---------------------------------------------+---------------------------------+
114+ +--------------------------------------------+
115+ | Operation |
116+ +--------------------------------------------+
117+ | Getting the principal components of a |
118+ | numerical dataset with ``PCA.fit() `` |
119+ +--------------------------------------------+
131120
132121
133122Model selection
134123------------------------
135124
136- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
137- | Operation | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
138- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
139- | Choosing parameters for a | Y | ``RandomizedSearchCV `` causes Snowpark pandas |
140- | ``LogisticRegression `` model with | | to issue many queries. We strongly recommend |
141- | ``RandomizedSearchCV.fit() ``. | | converting Snowpark pandas inputs to pandas |
142- | | | before using ``RandomizedSearchCV `` |
143- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
125+ +-------------------------------------------------+
126+ | Operation |
127+ +-------------------------------------------------+
128+ | Choosing parameters for a |
129+ | ``LogisticRegression `` model with |
130+ | ``RandomizedSearchCV.fit() `` |
131+ +-------------------------------------------------+
132+
133+ .. note ::
134+ ``RandomizedSearchCV `` causes Snowpark pandas to issue many queries. We strongly
135+ recommend converting Snowpark pandas inputs to pandas before using ``RandomizedSearchCV ``.
144136
145137Preprocessing
146138-------------
147139
148- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
149- | Operation | Interoperable with Snowpark pandas? (Y/N) | Notes for current implementation |
150- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
151- | Scaling training data with | Y | |
152- | ``MaxAbsScaler.fit_transform() ``. | | |
153- +--------------------------------------------+---------------------------------------------+-----------------------------------------------+
140+ +--------------------------------------------+
141+ | Operation |
142+ +--------------------------------------------+
143+ | Scaling training data with |
144+ | ``MaxAbsScaler.fit_transform() `` |
145+ +--------------------------------------------+
0 commit comments