|
| 1 | +# |
| 2 | +# Copyright (c) 2012-2025 Snowflake Computing Inc. All rights reserved. |
| 3 | +# |
| 4 | + |
| 5 | +# Licensed to Modin Development Team under one or more contributor license agreements. |
| 6 | +# See the NOTICE file distributed with this work for additional information regarding |
| 7 | +# copyright ownership. The Modin Development Team licenses this file to you under the |
| 8 | +# Apache License, Version 2.0 (the "License"); you may not use this file except in |
| 9 | +# compliance with the License. You may obtain a copy of the License at |
| 10 | +# |
| 11 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +# |
| 13 | +# Unless required by applicable law or agreed to in writing, software distributed under |
| 14 | +# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 15 | +# ANY KIND, either express or implied. See the License for the specific language |
| 16 | +# governing permissions and limitations under the License. |
| 17 | + |
| 18 | +# Code in this file may constitute partial or total reimplementation, or modification of |
| 19 | +# existing code originally distributed by the Modin project, under the Apache License, |
| 20 | +# Version 2.0. |
| 21 | + |
| 22 | +"""This module contains TimedeltaIndex docstrings that override modin's docstrings.""" |
| 23 | + |
| 24 | +from __future__ import annotations |
| 25 | + |
| 26 | +from snowflake.snowpark.modin.plugin.extensions.index import Index |
| 27 | + |
| 28 | + |
| 29 | +class TimedeltaIndex(Index): |
| 30 | + def __new__(): |
| 31 | + """ |
| 32 | + Create new instance of TimedeltaIndex. This overrides behavior of Index.__new__. |
| 33 | +
|
| 34 | + Parameters |
| 35 | + ---------- |
| 36 | + data : array-like (1-dimensional), optional |
| 37 | + Optional timedelta-like data to construct index with. |
| 38 | + unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional |
| 39 | + The unit of ``data``. |
| 40 | +
|
| 41 | + .. deprecated:: 2.2.0 |
| 42 | + Use ``pd.to_timedelta`` instead. |
| 43 | +
|
| 44 | + freq : str or pandas offset object, optional |
| 45 | + One of pandas date offset strings or corresponding objects. The string |
| 46 | + ``'infer'`` can be passed in order to set the frequency of the index as |
| 47 | + the inferred frequency upon creation. |
| 48 | + dtype : numpy.dtype or str, default None |
| 49 | + Valid ``numpy`` dtypes are ``timedelta64[ns]``, ``timedelta64[us]``, |
| 50 | + ``timedelta64[ms]``, and ``timedelta64[s]``. |
| 51 | + copy : bool |
| 52 | + Make a copy of input array. |
| 53 | + name : object |
| 54 | + Name to be stored in the index. |
| 55 | +
|
| 56 | + Returns: |
| 57 | + New instance of TimedeltaIndex. |
| 58 | + """ |
| 59 | + |
| 60 | + def __init__() -> None: |
| 61 | + """ |
| 62 | + Immutable Index of timedelta64 data. |
| 63 | +
|
| 64 | + Represented internally as int64, and scalars returned Timedelta objects. |
| 65 | +
|
| 66 | + Parameters |
| 67 | + ---------- |
| 68 | + data : array-like (1-dimensional), optional |
| 69 | + Optional timedelta-like data to construct index with. |
| 70 | + unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional |
| 71 | + The unit of ``data``. |
| 72 | +
|
| 73 | + .. deprecated:: 2.2.0 |
| 74 | + Use ``pd.to_timedelta`` instead. |
| 75 | +
|
| 76 | + freq : str or pandas offset object, optional |
| 77 | + One of pandas date offset strings or corresponding objects. The string |
| 78 | + ``'infer'`` can be passed in order to set the frequency of the index as |
| 79 | + the inferred frequency upon creation. |
| 80 | + dtype : numpy.dtype or str, default None |
| 81 | + Valid ``numpy`` dtypes are ``timedelta64[ns]``, ``timedelta64[us]``, |
| 82 | + ``timedelta64[ms]``, and ``timedelta64[s]``. |
| 83 | + copy : bool |
| 84 | + Make a copy of input array. |
| 85 | + name : object |
| 86 | + Name to be stored in the index. |
| 87 | +
|
| 88 | + Examples |
| 89 | + -------- |
| 90 | + >>> pd.TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days']) |
| 91 | + TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) |
| 92 | +
|
| 93 | + We can also let pandas infer the frequency when possible. |
| 94 | +
|
| 95 | + >>> pd.TimedeltaIndex(np.arange(5) * 24 * 3600 * 1e9, freq='infer') |
| 96 | + TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) |
| 97 | + """ |
| 98 | + |
| 99 | + @property |
| 100 | + def days(): |
| 101 | + """ |
| 102 | + Number of days for each element. |
| 103 | +
|
| 104 | + Returns |
| 105 | + ------- |
| 106 | + An Index with the days component of the timedelta. |
| 107 | +
|
| 108 | + Examples |
| 109 | + -------- |
| 110 | + >>> idx = pd.to_timedelta(["0 days", "10 days", "20 days"]) |
| 111 | + >>> idx |
| 112 | + TimedeltaIndex(['0 days', '10 days', '20 days'], dtype='timedelta64[ns]', freq=None) |
| 113 | + >>> idx.days |
| 114 | + Index([0, 10, 20], dtype='int64') |
| 115 | + """ |
| 116 | + |
| 117 | + @property |
| 118 | + def seconds(): |
| 119 | + """ |
| 120 | + Number of seconds (>= 0 and less than 1 day) for each element. |
| 121 | +
|
| 122 | + Returns |
| 123 | + ------- |
| 124 | + An Index with seconds component of the timedelta. |
| 125 | +
|
| 126 | + Examples |
| 127 | + -------- |
| 128 | + >>> idx = pd.to_timedelta([1, 2, 3], unit='s') |
| 129 | + >>> idx |
| 130 | + TimedeltaIndex(['0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03'], dtype='timedelta64[ns]', freq=None) |
| 131 | + >>> idx.seconds |
| 132 | + Index([1, 2, 3], dtype='int64') |
| 133 | + """ |
| 134 | + |
| 135 | + @property |
| 136 | + def microseconds(): |
| 137 | + """ |
| 138 | + Number of microseconds (>= 0 and less than 1 second) for each element. |
| 139 | +
|
| 140 | + Returns |
| 141 | + ------- |
| 142 | + An Index with microseconds component of the timedelta. |
| 143 | +
|
| 144 | + Examples |
| 145 | + -------- |
| 146 | + >>> idx = pd.to_timedelta([1, 2, 3], unit='us') |
| 147 | + >>> idx |
| 148 | + TimedeltaIndex(['0 days 00:00:00.000001', '0 days 00:00:00.000002', |
| 149 | + '0 days 00:00:00.000003'], |
| 150 | + dtype='timedelta64[ns]', freq=None) |
| 151 | + >>> idx.microseconds |
| 152 | + Index([1, 2, 3], dtype='int64') |
| 153 | + """ |
| 154 | + |
| 155 | + @property |
| 156 | + def nanoseconds(): |
| 157 | + """ |
| 158 | + Number of nonoseconds (>= 0 and less than 1 microsecond) for each element. |
| 159 | +
|
| 160 | + Returns |
| 161 | + ------- |
| 162 | + An Index with nanoseconds compnent of the timedelta. |
| 163 | +
|
| 164 | + Examples |
| 165 | + -------- |
| 166 | + >>> idx = pd.to_timedelta([1, 2, 3], unit='ns') |
| 167 | + >>> idx |
| 168 | + TimedeltaIndex(['0 days 00:00:00.000000001', '0 days 00:00:00.000000002', |
| 169 | + '0 days 00:00:00.000000003'], |
| 170 | + dtype='timedelta64[ns]', freq=None) |
| 171 | + >>> idx.nanoseconds |
| 172 | + Index([1, 2, 3], dtype='int64') |
| 173 | + """ |
| 174 | + |
| 175 | + @property |
| 176 | + def components(): |
| 177 | + """ |
| 178 | + Return a DataFrame of the individual resolution components of the Timedeltas. |
| 179 | +
|
| 180 | + The components (days, hours, minutes seconds, milliseconds, microseconds, |
| 181 | + nanoseconds) are returned as columns in a DataFrame. |
| 182 | +
|
| 183 | + Returns |
| 184 | + ------- |
| 185 | + A DataFrame |
| 186 | +
|
| 187 | + Examples |
| 188 | + -------- |
| 189 | + >>> idx = pd.to_timedelta(['1 day 3 min 2 us 42 ns']) # doctest: +SKIP |
| 190 | + >>> idx # doctest: +SKIP |
| 191 | + TimedeltaIndex(['1 days 00:03:00.000002042'], |
| 192 | + dtype='timedelta64[ns]', freq=None) |
| 193 | + >>> idx.components # doctest: +SKIP |
| 194 | + days hours minutes seconds milliseconds microseconds nanoseconds |
| 195 | + 0 1 0 3 0 0 2 42 |
| 196 | + """ |
| 197 | + |
| 198 | + @property |
| 199 | + def inferred_freq(): |
| 200 | + """ |
| 201 | + Tries to return a string representing a frequency generated by infer_freq. |
| 202 | +
|
| 203 | + Returns None if it can't autodetect the frequency. |
| 204 | +
|
| 205 | + Examples |
| 206 | + -------- |
| 207 | + >>> idx = pd.to_timedelta(["0 days", "10 days", "20 days"]) # doctest: +SKIP |
| 208 | + >>> idx # doctest: +SKIP |
| 209 | + TimedeltaIndex(['0 days', '10 days', '20 days'], |
| 210 | + dtype='timedelta64[ns]', freq=None) |
| 211 | + >>> idx.inferred_freq # doctest: +SKIP |
| 212 | + '10D' |
| 213 | + """ |
| 214 | + |
| 215 | + def round(): |
| 216 | + """ |
| 217 | + Perform round operation on the data to the specified `freq`. |
| 218 | +
|
| 219 | + Parameters |
| 220 | + ---------- |
| 221 | + freq : str or Offset |
| 222 | + The frequency level to round the index to. Must be a fixed |
| 223 | + frequency like 'S' (second) not 'ME' (month end). See |
| 224 | + frequency aliases for a list of possible `freq` values. |
| 225 | +
|
| 226 | + Returns |
| 227 | + ------- |
| 228 | + TimedeltaIndex with round values. |
| 229 | +
|
| 230 | + Raises |
| 231 | + ------ |
| 232 | + ValueError if the `freq` cannot be converted. |
| 233 | + """ |
| 234 | + |
| 235 | + def floor(): |
| 236 | + """ |
| 237 | + Perform floor operation on the data to the specified `freq`. |
| 238 | +
|
| 239 | + Parameters |
| 240 | + ---------- |
| 241 | + freq : str or Offset |
| 242 | + The frequency level to floor the index to. Must be a fixed |
| 243 | + frequency like 'S' (second) not 'ME' (month end). See |
| 244 | + frequency aliases for a list of possible `freq` values. |
| 245 | +
|
| 246 | + Returns |
| 247 | + ------- |
| 248 | + TimedeltaIndex with floor values. |
| 249 | +
|
| 250 | + Raises |
| 251 | + ------ |
| 252 | + ValueError if the `freq` cannot be converted. |
| 253 | + """ |
| 254 | + |
| 255 | + def ceil(): |
| 256 | + """ |
| 257 | + Perform ceil operation on the data to the specified `freq`. |
| 258 | +
|
| 259 | + Parameters |
| 260 | + ---------- |
| 261 | + freq : str or Offset |
| 262 | + The frequency level to ceil the index to. Must be a fixed |
| 263 | + frequency like 'S' (second) not 'ME' (month end). See |
| 264 | + frequency aliases for a list of possible `freq` values. |
| 265 | +
|
| 266 | + Returns |
| 267 | + ------- |
| 268 | + TimedeltaIndex with ceil values. |
| 269 | +
|
| 270 | + Raises |
| 271 | + ------ |
| 272 | + ValueError if the `freq` cannot be converted. |
| 273 | + """ |
| 274 | + |
| 275 | + def to_pytimedelta(): |
| 276 | + """ |
| 277 | + Return an ndarray of datetime.timedelta objects. |
| 278 | +
|
| 279 | + Returns |
| 280 | + ------- |
| 281 | + numpy.ndarray |
| 282 | +
|
| 283 | + Examples |
| 284 | + -------- |
| 285 | + >>> idx = pd.to_timedelta([1, 2, 3], unit='D') # doctest: +SKIP |
| 286 | + >>> idx # doctest: +SKIP |
| 287 | + TimedeltaIndex(['1 days', '2 days', '3 days'], |
| 288 | + dtype='timedelta64[ns]', freq=None) |
| 289 | + >>> idx.to_pytimedelta() # doctest: +SKIP |
| 290 | + array([datetime.timedelta(days=1), datetime.timedelta(days=2), |
| 291 | + datetime.timedelta(days=3)], dtype=object) |
| 292 | + """ |
| 293 | + |
| 294 | + def mean(): |
| 295 | + """ |
| 296 | + Return the mean value of the Timedelta values. |
| 297 | +
|
| 298 | + Parameters |
| 299 | + ---------- |
| 300 | + skipna : bool, default True |
| 301 | + Whether to ignore any NaT elements. |
| 302 | + axis : int, optional, default 0 |
| 303 | +
|
| 304 | + Returns |
| 305 | + ------- |
| 306 | + scalar Timedelta |
| 307 | +
|
| 308 | + Examples |
| 309 | + -------- |
| 310 | + >>> idx = pd.to_timedelta([1, 2, 3, 1], unit='D') |
| 311 | + >>> idx |
| 312 | + TimedeltaIndex(['1 days', '2 days', '3 days', '1 days'], dtype='timedelta64[ns]', freq=None) |
| 313 | + >>> idx.mean() |
| 314 | + Timedelta('1 days 18:00:00') |
| 315 | +
|
| 316 | + See Also |
| 317 | + -------- |
| 318 | + numpy.ndarray.mean : Returns the average of array elements along a given axis. |
| 319 | + Series.mean : Return the mean value in a Series. |
| 320 | + """ |
| 321 | + |
| 322 | + def as_unit(): |
| 323 | + """ |
| 324 | + Convert to a dtype with the given unit resolution. |
| 325 | +
|
| 326 | + Parameters |
| 327 | + ---------- |
| 328 | + unit : {'s', 'ms', 'us', 'ns'} |
| 329 | +
|
| 330 | + Returns |
| 331 | + ------- |
| 332 | + DatetimeIndex |
| 333 | +
|
| 334 | + Examples |
| 335 | + -------- |
| 336 | + >>> idx = pd.to_timedelta(['1 day 3 min 2 us 42 ns']) # doctest: +SKIP |
| 337 | + >>> idx # doctest: +SKIP |
| 338 | + TimedeltaIndex(['1 days 00:03:00.000002042'], |
| 339 | + dtype='timedelta64[ns]', freq=None) |
| 340 | + >>> idx.as_unit('s') # doctest: +SKIP |
| 341 | + TimedeltaIndex(['1 days 00:03:00'], dtype='timedelta64[s]', freq=None) |
| 342 | + """ |
| 343 | + |
| 344 | + def total_seconds(): |
| 345 | + """ |
| 346 | + Return total duration of each element expressed in seconds. |
| 347 | +
|
| 348 | + Returns |
| 349 | + ------- |
| 350 | + An Index with float type. |
| 351 | +
|
| 352 | + Examples: |
| 353 | + -------- |
| 354 | + >>> idx = pd.to_timedelta(np.arange(5), unit='d') |
| 355 | + >>> idx |
| 356 | + TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) |
| 357 | + >>> idx.total_seconds() |
| 358 | + Index([0.0, 86400.0, 172800.0, 259200.0, 345600.0], dtype='float64') |
| 359 | + """ |
0 commit comments