Skip to content

Commit a216f48

Browse files
committed
issue with installation due to modeller update solved
1 parent b7cc72c commit a216f48

File tree

7 files changed

+12
-7
lines changed

7 files changed

+12
-7
lines changed

.gitignore

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,4 +43,5 @@ initial_guess_benchmark/
4343
neoantigen/
4444
parsefold_affine/
4545
predictions/
46-
46+
PMBind/
47+
data/example/test_5npz.tsv

PANDORA/PANDORA/PMHC/PMHC.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -316,7 +316,7 @@ def __init__(self, id, peptide, allele_type=[], MHC_class = 'I',
316316
try:
317317
print(top_ids[:5])
318318
top_id = top_ids[self.top_rank_num][0] # blast_results is a list of top ids as tuples
319-
print('###############################DDDDD', top_ids[self.top_rank_num][0])
319+
print( top_ids[self.top_rank_num][0])
320320
self.allele_type = [top_id]
321321
print('Predicting Anchors for:', self.allele_type, self.top_rank_num)
322322
self.anchors = Modelling_functions.predict_anchors_netMHCpan(
@@ -334,7 +334,7 @@ def __init__(self, id, peptide, allele_type=[], MHC_class = 'I',
334334
f"(top_rank_num={self.top_rank_num}) - {e}")
335335

336336
elif MHC_class == 'II' and len(anchors) < 4:
337-
print('WARNING: no anchor positions provided. Pandora will predict them using netMHCIIpan. anchors:', anchors)
337+
print('WARNING: no anchor positions provided. Pandora will predict them using netMHCIIpan. anchorssssss:', anchors)
338338
try:
339339
print(top_ids[:5])
340340
top_id = top_ids[0][1]

PMGen-cpuonly.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ dependencies:
108108
- markupsafe=3.0.2=py39h9399b63_1
109109
- mkl=2022.2.1=h84fe81f_16997
110110
- ml-collections=0.1.1=pyhd8ed1ab_0
111-
- modeller=10.6=py39h9bf148f_0
111+
- modeller
112112
- mpc=1.3.1=h24ddda3_1
113113
- mpfr=4.2.1=h90cbb55_3
114114
- mpmath=1.3.0=pyhd8ed1ab_1

PMGen.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ dependencies:
108108
- markupsafe=3.0.2=py39h9399b63_1
109109
- mkl=2022.2.1=h84fe81f_16997
110110
- ml-collections=0.1.1=pyhd8ed1ab_0
111-
- modeller=10.6=py39h9bf148f_0
111+
- modeller
112112
- mpc=1.3.1=h24ddda3_1
113113
- mpfr=4.2.1=h90cbb55_3
114114
- mpmath=1.3.0=pyhd8ed1ab_1

data/example/test_5npz.tsv

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,3 @@
11
peptide mhc_seq mhc_type anchors id
2-
EFEDLTFLA MGPHSLSYFSTAVSRPDRGDSRFIAVGYVDDTQFVRFDSDAPNPRMEPRAPWIQQEGQEYWDRNTRNVMGSAQINRVNLKTLRGYYNQSEAGSHTLQWMYGCYLGPDGLLLRGYDQFAYDGADYLALNEDLRSWTAADMAAQISKRKWEAADAAEHWRSYLQGTCVESLRRYLQMGKDTLQRAEP 1 5NPZ
2+
RFYKTLRAEQASQ EEHVIIQAEFYLNPDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITNVPPEVTVLTNSPV/DTRPRFLWQLKFECHFFNGTERVRLLERCIYNQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQRRAAVDTYCRHNYGVGESFTVQRRVE 2 6CQJ
3+
TPRVTGGGAM GSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEYWDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQSMYGCDVGPDGRLLRGHDQYAYDGKDYIALNEDLRSWTAADTAAQITQRKWEAAREAEQRRAYLEGECVEWLRRYLENGKDKLERADPP 1 5WMP

install.sh

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,6 @@ else
8080
ACTIVATE_CMD="conda activate"
8181
echo "⚠ Mamba not found! Falling back to Conda."
8282
fi
83-
8483
# Step 3: Ensure Conda is initialized
8584
if [ -z "$CONDA_PREFIX" ]; then
8685
source "$(conda info --base)/etc/profile.d/conda.sh"

run_PMGen.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -173,10 +173,14 @@ def main():
173173
AMINO_ACIDS = set('ARNDCEQGHILKMFPSTWYV/')
174174
try:
175175
df = pd.read_csv(args.df, sep='\t')
176+
print(df)
176177
_ = df['mhc_seq']
177178
except:
178179
df = pd.read_csv(args.df)
180+
print(df)
179181
_ = df['mhc_seq']
182+
183+
180184
df['mhc_seq'] = [''.join([aa.upper() for aa in seq if aa.upper() in AMINO_ACIDS]) for seq in df['mhc_seq'].tolist()] # remove gaps from df:
181185
if args.multiple_anchors:
182186
L1 = len(df)

0 commit comments

Comments
 (0)