|
1 | 1 | ReHLine: Matrix Factorization |
2 | | -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 3 | + |
| 4 | +This tutorial illustrates how to conduct Matrix Factorization (MF) with multiple PLQ loss functions through ReHLine. |
| 5 | +We provide 2 versions of prediction methods: |
| 6 | + |
| 7 | +.. math:: |
| 8 | + \begin{aligned} |
| 9 | + &\text{Including bias terms:} && \hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i + \alpha_u + \beta_i \\ |
| 10 | + &\text{Excluding bias terms:} && \hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i \\ |
| 11 | + \end{aligned} |
| 12 | +
|
| 13 | +
|
| 14 | +Mathematical Formulation |
| 15 | +------------------------ |
| 16 | + |
| 17 | +Considering a User-Item-Rating triplet dataset :math:`(u, i, r_{ui})` derived from target sparse matrix, the optimization problem corresponding to this scenario is: |
| 18 | + |
| 19 | +.. math:: |
| 20 | + \min_{\substack{ |
| 21 | + \mathbf{P} \in \mathbb{R}^{n \times r}\ |
| 22 | + \pmb{\alpha} \in \mathbb{R}^n \\ |
| 23 | + \mathbf{Q} \in \mathbb{R}^{m \times r}\ |
| 24 | + \pmb{\beta} \in \mathbb{R}^m |
| 25 | + }} |
| 26 | + \left[ |
| 27 | + \sum_{(u,i)\in \Omega} C \cdot \text{PLQ}(r_{ui}, \ \mathbf{p}_u^T \mathbf{q}_i + \alpha_u + \beta_i) |
| 28 | + \right] |
| 29 | + + |
| 30 | + \left[ |
| 31 | + \frac{\rho}{n}\sum_{u=1}^n(\|\mathbf{p}_u\|_2^2 + \alpha_u^2) |
| 32 | + + \frac{1-\rho}{m}\sum_{i=1}^m(\|\mathbf{q}_i\|_2^2 + \beta_i^2) |
| 33 | + \right] |
| 34 | +
|
| 35 | +.. math:: |
| 36 | + \ \text{ s.t. } \ |
| 37 | + \mathbf{A} \begin{bmatrix} |
| 38 | + \pmb{\alpha} & \mathbf{P} |
| 39 | + \end{bmatrix}^T + |
| 40 | + \mathbf{b}\mathbf{1}_{n}^T \geq \mathbf{0} |
| 41 | + \ \text{ and } \ |
| 42 | + \mathbf{A} \begin{bmatrix} |
| 43 | + \pmb{\beta} & \mathbf{Q} |
| 44 | + \end{bmatrix}^T + |
| 45 | + \mathbf{b}\mathbf{1}_{m}^T \geq \mathbf{0} |
| 46 | +
|
| 47 | +
|
| 48 | +where |
| 49 | + |
| 50 | +- :math:`\text{PLQ}(\cdot , \cdot)` |
| 51 | + is a convex piecewise linear-quadratic loss function. You can find built-in loss functions in the `Loss <./loss.rst>`_ section. |
| 52 | + |
| 53 | +- :math:`\mathbf{A}` is a :math:`K \times r` matrix and :math:`\mathbf{b}` is a :math:`K`-dimensional vector |
| 54 | + representing :math:`K` linear constraints. See `Constraints <./constraint.rst>`_ for more details. |
| 55 | + |
| 56 | +- :math:`\Omega` |
| 57 | + is a user-item collection that records all training data |
| 58 | + |
| 59 | +- :math:`n` is number of users, :math:`m` is number of items |
| 60 | + |
| 61 | +- :math:`r` is length of latent factors (rank of MF) |
| 62 | + |
| 63 | +- :math:`C` is regularization parameter, :math:`\rho` balances regularization strength between user and item |
| 64 | + |
| 65 | +- :math:`\mathbf{p}_u` and :math:`\alpha_u` |
| 66 | + are latent vector and individual bias of u-th user. Specifically, :math:`\mathbf{p}_u` is the u-th row of :math:`\mathbf{P}`, and :math:`\alpha_u` is the u-th element of :math:`\pmb{\alpha}` |
| 67 | + |
| 68 | +- :math:`\mathbf{q}_i` and :math:`\beta_i` |
| 69 | + are latent vector and individual bias of i-th item. Specifically, :math:`\mathbf{q}_i` is the i-th row of :math:`\mathbf{Q}`, and :math:`\beta_i` is the i-th element of :math:`\pmb{\beta}` |
| 70 | + |
| 71 | + |
| 72 | +Implementation Guide |
| 73 | +-------------------- |
| 74 | + |
| 75 | +A simple synthetic dataset is used for illustration. The implementation can be easily adapted to your specific triplet data, allowing you to experiment with various loss functions. |
| 76 | + |
| 77 | +Setup |
| 78 | +^^^^^ |
| 79 | + |
| 80 | +To proceed, ensure that you have already installed :code:`rehline`: |
| 81 | + |
| 82 | +.. code-block:: bash |
| 83 | +
|
| 84 | + pip install rehline |
| 85 | +
|
| 86 | +Basic Usage |
| 87 | +^^^^^^^^^^^ |
| 88 | + |
| 89 | +.. code-block:: python |
| 90 | +
|
| 91 | + # 1. Necessary Packages |
| 92 | + import numpy as np |
| 93 | + from rehline import plqMF_Ridge, make_ratings |
| 94 | + from sklearn.model_selection import train_test_split |
| 95 | + from sklearn.metrics import mean_absolute_error |
| 96 | +
|
| 97 | +
|
| 98 | + # 2. Data Preparation |
| 99 | + # Generate synthetic data (replace with your own data in practice) |
| 100 | + user_num, item_num = 1200, 4000 |
| 101 | + ratings = make_ratings(n_users=user_num, n_items=item_num, |
| 102 | + n_interactions=50000, seed=42) |
| 103 | + |
| 104 | + # Split into training and testing sets |
| 105 | + X_train, X_test, y_train, y_test = train_test_split( |
| 106 | + ratings['X'], ratings['y'], test_size=0.3, random_state=42) |
| 107 | +
|
| 108 | +
|
| 109 | + # 3. Model Construction |
| 110 | + clf = plqMF_Ridge( |
| 111 | + C=0.001, ## Regularization strength |
| 112 | + rank=6, ## Latent factor dimension |
| 113 | + loss={'name': 'mae'}, ## Use absolute loss |
| 114 | + n_users=user_num, ## Number of users |
| 115 | + n_items=item_num, ## Number of items |
| 116 | + ) |
| 117 | + clf.fit(X_train, y_train) |
| 118 | +
|
| 119 | +
|
| 120 | + # 4. Evaluation |
| 121 | + y_pred = clf.decision_function(X_test) |
| 122 | + mae_score = mean_absolute_error(y_test, y_pred) |
| 123 | + print(f"Test MAE: {mae_score:.3f}") |
| 124 | + |
| 125 | +Advanced Configuration |
| 126 | +^^^^^^^^^^^^^^^^^^^^^^ |
| 127 | + |
| 128 | +Choosing different `loss functions <./loss.rst>`_ through :code:`loss`: |
| 129 | + |
| 130 | +.. code-block:: python |
| 131 | +
|
| 132 | + # Square loss |
| 133 | + clf_mse = plqMF_Ridge( |
| 134 | + C=0.001, |
| 135 | + rank=6, |
| 136 | + loss={'name': 'mse'}, ## Choose square loss |
| 137 | + n_users=user_num, |
| 138 | + n_items=item_num) |
| 139 | + |
| 140 | + # Hinge loss (suitable for binary data) |
| 141 | + clf_hinge = plqMF_Ridge( |
| 142 | + C=0.001, |
| 143 | + rank=6, |
| 144 | + loss={'name': 'hinge'}, ## Choose hinge loss |
| 145 | + n_users=user_num, |
| 146 | + n_items=item_num) |
| 147 | +
|
| 148 | +`Linear constraints <./constraint.rst>`_ can be applied via :code:`constraint`: |
| 149 | + |
| 150 | +.. code-block:: python |
| 151 | +
|
| 152 | + # Implement a linear constraint |
| 153 | + clf_nonnegative = plqMF_Ridge( |
| 154 | + C=0.001, |
| 155 | + rank=6, |
| 156 | + loss={'name': 'mae'}, |
| 157 | + n_users=user_num, |
| 158 | + n_items=item_num, |
| 159 | + constraint=[{'name': '>=0'}] ## Use nonnegative constraint |
| 160 | + ) |
| 161 | + |
| 162 | +The algorithm includes bias terms by default. To disable them, set: :code:`biased=False`: |
| 163 | + |
| 164 | +.. code-block:: python |
| 165 | +
|
| 166 | + # Exclude user and item biases |
| 167 | + clf_unbiased = plqMF_Ridge( |
| 168 | + C=0.001, |
| 169 | + rank=6, |
| 170 | + loss={'name': 'mae'}, |
| 171 | + n_users=user_num, |
| 172 | + n_items=item_num, |
| 173 | + biased=False ## Disable bias terms |
| 174 | + ) |
| 175 | + |
| 176 | +Imposing different strengths of regularization on items/users through :code:`rho`: |
| 177 | + |
| 178 | +.. code-block:: python |
| 179 | +
|
| 180 | + # Imbalanced penalty |
| 181 | + clf_asymmetric = plqMF_Ridge( |
| 182 | + C=0.001, |
| 183 | + rank=6, |
| 184 | + loss={'name': 'mae'}, |
| 185 | + n_users=user_num, |
| 186 | + n_items=item_num, |
| 187 | + rho=0.7 ## Add heavier penalties for user parameters |
| 188 | + ) |
| 189 | +
|
| 190 | +Parameter Tuning |
| 191 | +^^^^^^^^^^^^^^^^ |
| 192 | + |
| 193 | +The model complexity is mainly controlled by :code:`C` and :code:`rank`. |
| 194 | + |
| 195 | +.. code-block:: python |
| 196 | +
|
| 197 | + |
| 198 | + for C_value in [0.0002, 0.001, 0.005]: |
| 199 | + clf = plqMF_Ridge( |
| 200 | + C=C_value, ## Try different regularization strengths |
| 201 | + rank=6, |
| 202 | + loss={'name': 'mae'}, |
| 203 | + n_users=user_num, |
| 204 | + n_items=item_num |
| 205 | + ) |
| 206 | + clf.fit(X_train, y_train) |
| 207 | + y_pred = clf.decision_function(X_test) |
| 208 | + mae = mean_absolute_error(y_test, y_pred) |
| 209 | + print(f"C={C_value}: MAE = {mae:.3f}") |
| 210 | +
|
| 211 | +
|
| 212 | + for rank_value in [4, 8, 12]: |
| 213 | + clf = plqMF_Ridge( |
| 214 | + C=0.001, |
| 215 | + rank=rank_value, ## Try different latent factor dimensions |
| 216 | + loss={'name': 'mae'}, |
| 217 | + n_users=user_num, |
| 218 | + n_items=item_num |
| 219 | + ) |
| 220 | + clf.fit(X_train, y_train) |
| 221 | + y_pred = clf.decision_function(X_test) |
| 222 | + mae = mean_absolute_error(y_test, y_pred) |
| 223 | + print(f"rank={rank_value}: MAE = {mae:.3f}") |
| 224 | +
|
| 225 | +Convergence Tracking |
| 226 | +^^^^^^^^^^^^^^^^^^^^ |
| 227 | + |
| 228 | +You can customize the optimization process by setting your preferred iteration counts and tolerance levels. |
| 229 | +Training progress can be monitored either by enabling :code:`verbose` output during fitting or by examining the :code:`history` attribute after fitting. |
| 230 | + |
| 231 | +.. code-block:: python |
| 232 | +
|
| 233 | + clf = plqMF_Ridge( |
| 234 | + C=0.001, |
| 235 | + rank=6, |
| 236 | + loss={'name': 'mae'}, |
| 237 | + n_users=user_num, |
| 238 | + n_items=item_num, |
| 239 | + max_iter_CD=15, ## Outer CD iterations |
| 240 | + tol_CD=1e-5, ## Outer CD tolerance |
| 241 | + max_iter=8000, ## ReHLine solver iterations |
| 242 | + tol=1e-2, ## ReHLine solver tolerance |
| 243 | + verbose=1, ## Enable progress output |
| 244 | + ) |
| 245 | + clf.fit(X_train, y_train) |
| 246 | +
|
| 247 | + print(clf.history) ## Check training trace of cumulative loss and objection value |
| 248 | +
|
| 249 | +Different Gaussian initial conditions can be manually set by :code:`init_mean` and :code:`init_sd`: |
| 250 | + |
| 251 | +.. code-block:: python |
| 252 | +
|
| 253 | + # Initialize model with positive shifted normal |
| 254 | + clf = plqMF_Ridge( |
| 255 | + C=0.001, |
| 256 | + rank=6, |
| 257 | + loss={'name': 'mae'}, |
| 258 | + n_users=user_num, |
| 259 | + n_items=item_num, |
| 260 | + init_mean=1.0, ## Manually set mean of normal distribution |
| 261 | + init_sd=0.5 ## Manually set sd of normal distribution |
| 262 | + ) |
| 263 | +
|
| 264 | +Practical Guidance |
| 265 | +^^^^^^^^^^^^^^^^^^ |
| 266 | + |
| 267 | +- The first column of :code:`X` corresponds to **users**, and the second column corresponds to **items**. Please ensure this aligns with your :code:`n_users` and :code:`n_items` parameters. |
| 268 | +- The default penalty strength is relatively weak; it is recommended to set a relatively small :code:`C` value initially. |
| 269 | +- When using larger :code:`C` values, consider increasing :code:`max_iter` to avoid ConvergenceWarning. |
| 270 | + |
| 271 | + |
| 272 | +Regularization Conversion |
| 273 | +------------------------- |
| 274 | +The regularization in this algorithm is tuned via :math:`C` and :math:`\rho`. For users who prefer to set the penalty strength directly, you may achieve conversion through the following formula: |
| 275 | + |
| 276 | +.. math:: |
| 277 | + \lambda_{\text{user}} = \frac{\rho}{Cn} |
| 278 | + \quad\text{and}\quad |
| 279 | + \lambda_{\text{item}} = \frac{(1 - \rho)}{Cm} |
| 280 | +
|
| 281 | +
|
| 282 | +.. math:: |
| 283 | + C = \frac{1}{m \cdot \lambda_{\text{item}} + n \cdot \lambda_{\text{user}}} |
| 284 | + \quad\text{and}\quad |
| 285 | + \rho = \frac{1}{\frac{m \cdot \lambda_{\text{item}}}{ n \cdot \lambda_{\text{user}}}+1} |
| 286 | +
|
| 287 | +
|
| 288 | +Example |
| 289 | +------- |
| 290 | + |
| 291 | +.. nblinkgallery:: |
| 292 | + :caption: Empirical Risk Minimization |
| 293 | + :name: rst-link-gallery |
| 294 | + |
| 295 | + ../examples/MF.ipynb |
0 commit comments