You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/geophires_x_schema_generator/geophires-result.json
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -410,7 +410,7 @@
410
410
"Stimulation costs (for redrilling)": {},
411
411
"Surface power plant costs": {
412
412
"type": "number",
413
-
"description": "Surface Plant cost. The built-in power plant cost correlations are based on the original correlations developed by Beckers (2016), indexed to 2017 using the IHS Markit North American Power Capital Costs Index (NAPCCI) excluding nuclear plants (IHS 2018). The ORC power plant cost data have been updated with data from the 2016 GETEM tool (DOE 2016) and the geothermal binary power plants study by Verkis (2014). The correlations in GEOPHIRES include 12% for indirect costs and 15% contingency. For the same plant size and production temperature, double-flash power plants are considered about 25% more expensive than single-flash power plants (Zeyghami 2010), and supercritical ORC plants are roughly 10% more than subcritical ORC plants (Astolfi et al. 2014). A wide range in power plant specific cost values is reported in academic and popular literature. The GEOPHIRES built-in surface plant cost correlations represent typical values. However, the user is recommended to provide their own power plant cost data if available for their case study. The ORC plant specific cost decreases only moderately at higher temperatures. The reasons are that when increasing the temperature, the ORC plant design also changes: (1) a different organic fluid is selected, (2) piping, pump, heat exchangers, and other equipment are designed to handle the higher temperature (and potentially also pressure), requiring thicker walls, potentially different materials, etc., and (3) additional components may be implemented, such as a heat recuperator, making the design and operation more complex. Unlike flash power plants, ORC plants are a small, niche market, typically case specific, and rely on relatively young technology, which has not been subject yet to decades of technological advancement. The cost for direct-use heat applications is highly dependent on the type of application. A generic cost of $250 kWth\u22121 is assumed plus 15% contingency plus 12% indirect costs. However, users are encouraged to provide their own cost figures for their specific application. Beckers and Young (2017) collected several cost figures to estimate the surface equipment cost for geothermal district-heating systems.",
413
+
"description": "Surface Plant cost. The built-in power plant cost correlations are based on the original correlations developed by Beckers (2016), indexed to 2017 using the IHS Markit North American Power Capital Costs Index (NAPCCI) excluding nuclear plants (IHS 2018). The ORC power plant cost data have been updated with data from the 2016 GETEM tool (DOE 2016) and the geothermal binary power plants study by Verkis (2014). Figure 4 in the Theoretical Basis shows the power plant capital cost expressed in $ kWe\u22121 as a function of plant size and initial production temperature for subcritical ORC and double-flash power plants. The default correlations in GEOPHIRES include 15% contingency plus 12% indirect costs. For the same plant size and production temperature, double-flash power plants are considered about 25% more expensive than single-flash power plants (Zeyghami 2010), and supercritical ORC plants are roughly 10% more than subcritical ORC plants (Astolfi et al. 2014). A wide range in power plant specific cost values is reported in academic and popular literature. The GEOPHIRES built-in surface plant cost correlations represent typical values. However, the user is recommended to provide their own power plant cost data if available for their case study. The ORC plant specific cost decreases only moderately at higher temperatures. The reasons are that when increasing the temperature, the ORC plant design also changes: (1) a different organic fluid is selected, (2) piping, pump, heat exchangers, and other equipment are designed to handle the higher temperature (and potentially also pressure), requiring thicker walls, potentially different materials, etc., and (3) additional components may be implemented, such as a heat recuperator, making the design and operation more complex. Unlike flash power plants, ORC plants are a small, niche market, typically case specific, and rely on relatively young technology, which has not been subject yet to decades of technological advancement. The cost for direct-use heat applications is highly dependent on the type of application. A generic cost of $250 kWth\u22121 is assumed plus 15% contingency plus 12% indirect costs. However, users are encouraged to provide their own cost figures for their specific application. Beckers and Young (2017) collected several cost figures to estimate the surface equipment cost for geothermal district-heating systems.",
0 commit comments