diff --git a/.editorconfig b/.editorconfig
index 586c7367..74879ed0 100644
--- a/.editorconfig
+++ b/.editorconfig
@@ -18,3 +18,7 @@ indent_size = 2
[*.tsv]
indent_style = tab
+
+[*.jinja]
+trim_trailing_whitespace = false
+indent_size = unset
diff --git a/.gitignore b/.gitignore
index 7ff373e9..d95adb7e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -96,6 +96,7 @@ output/*/index.html
# Sphinx/docs
docs/_build
+docs/temp.txt
docs/reference/geophires-request.json
docs/reference/parameters.rst
docs/Fervo_Project_Cape-4.md
diff --git a/docs/Fervo_Project_Cape-4.md.jinja b/docs/Fervo_Project_Cape-4.md.jinja
index c94e8939..42f175be 100644
--- a/docs/Fervo_Project_Cape-4.md.jinja
+++ b/docs/Fervo_Project_Cape-4.md.jinja
@@ -3,7 +3,7 @@
## Introduction
The GEOPHIRES example `Fervo_Project_Cape-4` is a case study of a 500 MWe EGS project modeled
-on Phase II of [Fervo Energy's Cape Station](https://capestation.com/).
+on Phases I and II of [Fervo Energy's Cape Station](https://capestation.com/).
Key case study results include LCOE = {{ '$' ~ lcoe_usd_per_mwh ~ '/MWh' }} and IRR = {{ irr_pct ~ '%' }}.
@@ -20,9 +20,8 @@ engineering estimates.
The model assumes the developer is a "fast follower": benefiting from the proof-of-concept established by Cape Station
Phase I but operating without access to Fervo’s private supply chain or proprietary optimization data.
-**Public Data Reliance:** Inputs utilize exact values for publicly available parameters, such as reservoir
-density ([2800 kg/m³](https://doi.org/10.31223/X52X0B)) and geothermal
-gradient ([72.23 ℃/km](https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/Fercho.pdf)).
+**Public Data Reliance:** Inputs utilize exact values for publicly available parameters, such as geothermal
+gradient and reservoir density.
Where data is proprietary, values are inferred from public announcements or extrapolated from standard industry
correlations.
@@ -54,7 +53,7 @@ The results serve as reference points for what is achievable using current techn
as customizable template for modeling other resources.
Users can input local geologic data (gradient, rock properties) into this template to evaluate how a Cape Station-style
design would perform in different geographies (e.g., Nevada vs. Utah vs. International).
-Different plant sizes and performance targets can be modeled by adjusting the number of doublets, fractures per well,
+Different plant sizes and performance targets can be modeled by adjusting the number of production wells, fractures per well,
and other technical & engineering parameters.
The model allows users to stress-test economic assumptions, such as the PPA price or Investment Tax Credit (ITC), to see
how policy changes impact the feasibility of replicating this design elsewhere.
@@ -63,63 +62,59 @@ how policy changes impact the feasibility of replicating this design elsewhere.
The Inputs and Results tables document key assumptions, inputs, and a comparison of results with reference
values.
-Note that these are not the exhaustive set of inputs and results, which are available in source code and
+Note that these are not the exhaustive sets of inputs and results, which are available in source code and
the [web interface](https://gtp.scientificwebservices.com/geophires/?geophires-example-id=Fervo_Project_Cape-4).
### Inputs
-Exact values were used for publicly available technical and engineering parameters, such as reservoir
-density ([2800 kg/m³](https://doi.org/10.31223/X52X0B)).
-Some technical parameters were inferred from publicly available data, such as geothermal
-gradient ([72.23 ℃/km](https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/Fercho.pdf)).
-Other parameters were extrapolated or speculatively estimated based on plausibility and/or compatibility with known
-results, such as number of doublets (well pairs).
-
See [Fervo_Project_Cape-4.txt](https://github.com/softwareengineerprogrammer/GEOPHIRES/blob/main/tests/examples/Fervo_Project_Cape-4.txt)
in source code for the full set of inputs.
+#### Reservoir Parameters
+
+{{ reservoir_parameters_table_md }}
+
+#### Well Bores Parameters
+
+{{ well_bores_parameters_table_md }}
+
+#### Surface Plant Parameters
+
+{{ surface_plant_parameters_table_md }}
+
+#### Construction Parameters
+
+{{ construction_parameters_table_md }}
+
+
#### Economic Parameters
-{# @formatter:off #}
-| Parameter | Input Value(s) | Source |
-|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
-| Economic Model | SAM Single Owner PPA | The SAM Single Owner PPA economic model is used to calculate financial results including LCOE, NPV, IRR, and pro-forma cash flow analysis. See [GEOPHIRES documentation of SAM Economic Models](https://softwareengineerprogrammer.github.io/GEOPHIRES/SAM-Economic-Models.html) for details on how System Advisor Model financial models are integrated into GEOPHIRES. |
-| PPA Price | Starting at {{ starting_ppa_price_cents_per_kwh ~ '¢/kWh' }}, escalating to {{ year_10_ppa_price_cents_per_kwh }}¢/kWh by project year 11. | Aligns with Geysers - Sacramento pricing in 2024b ATB (NREL, 2025). See Sensitivity Analysis for effect of different prices on results. |
-| Inflation Rate | 2.7% | US inflation rate as of December 2025 |
-| Investment Tax Credit Rate (ITC) | 30% | Geothermal Drilling & Completions Apprenticeship Program ensures compliance with ITC labor requirements (Southern Utah University, 2024). |
-| Discount Rate | 12% | Typical discount rates for high-risk projects may be 12–15% |
-| Inflated Bond Interest Rate | 8% | Higher than typical debt annual interest rate |
-| Inflated Bond Interest Rate During Construction | 10% | Higher interest rate during construction to account for increased risk of default |
-| Fraction of Investment in Bonds (percent debt vs. equity) | 60% | Approximate remaining percentage of CAPEX with $1 billion sponsor equity per Matson, 2024. Note that this source says that Fervo ultimately wants to target "15% sponsor equity, 15% bridge loan, and 70% construction to term loans", but this case study does not attempt to model that capital structure. |
-| WACC | {{ wacc_pct ~ '%' }} | Fervo's target goal is to eventually achieve a "Solar Standard" WACC of 8.3% (Matson, 2024). |
-| Exploration Capital Cost | {{ '$' ~ exploration_cost_musd ~ 'M' }} | Equivalent to 2024b ATB NF-EGS conservative scenario exploration assumption of 5 full-size wells (NREL, 2025), plus $1M for geophysical and field work, plus 15% contingency, plus 12% indirect costs. |
-| Well Drilling Cost Correlation & Adjustment Factor | {Vertical large baseline correlation} × {adjustment factor = 0.9} | NREL, 2025; Akindipe & Witter, 2025. Note: Fervo claims lower drilling costs of <$4M/well (Latimer, 2025), which would be equivalent to an adjustment factor of 0.8. |
-| Reservoir Stimulation Capital Cost per Well | {{ '$' ~ stim_costs_per_well_musd ~ 'M' }} (all-in cost, including 5% indirect costs and 15% contingency) | The all-in cost is based on a $4M baseline stimulation cost, calibrated from per-stage costs of high-intensity U.S. shale wells (Baytex Energy, 2024; Quantum Proppant Technologies, 2020), which are the closest technological analogue for multi-stage EGS (Gradl, 2018). Costs are also driven by the requirement for high-strength ceramic proppant rather than standard sand, which would crush or chemically degrade (diagenesis) over a 30-year lifecycle at 200℃ (Ko et al., 2023; Shiozawa & McClure, 2014) and the premium for ultra-high-temperature (HT) downhole tools. |
-| Capital Cost for Power Plant for Electricity Generation | $1900/kW | US DOE, 2021. |
-{# @formatter:on #}
+{{ economics_parameters_table_md }}
+
+### Calibration with Fervo-implemented Field Design
-#### Technical & Engineering Parameters
+[Designing the Record-Breaking Enhanced Geothermal System at Project Cape](https://www.resfrac.com/wp-content/uploads/2025/06/Singh-2025-Fervo-Project-Cape.pdf) (Singh et al., 2025)
+describes reservoir modeling (ResFrac) that informed the Cape Station field implementation.
+An equivalent GEOPHIRES simulation was run using the case study's reservoir engineering parameters, with the following modifications to align with Singh et al.'s modeling scenario:
+
+{{ reservoir_engineering_reference_simulation_params_table_md }}
+
+The following table compares the average production temperature profile from the "700 ft bench spacing" scenario in Singh et al. with the GEOPHIRES simulation.
{# @formatter:off #}
-| Parameter | Input Value(s) | Source |
-|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
-| Gradient | {{ gradient_1_degc_per_km ~ '℃/km' }} | 200℃ at 8500 ft depth (Fercho et al., 2024), 228.89℃ at 9824 ft (Norbeck et al., 2024). |
-| Construction Years | {{ construction_yrs }} | Ground broken in 2023 (Fervo Energy, 2023). Expected to reach full scale production in 2028 (Fervo Energy, 2025). See [GEOPHIRES documentation](SAM-EM_Multiple-Construction-Years.html) for details on how construction years affect CAPEX, IRR, and other calculations. |
-| Plant Lifetime | {{ plant_lifetime_yrs }} years | 30-year well life per Geothermal Mythbusting: Water Use and Impacts (Fervo Energy, 2025). |
-| Well diameter | 9⅝ inches (OD); 8½ inches (ID) | 9⅝" is the next standard size up from 7", implied by announcement of "increasing casing diameter" (Fervo Energy, 2025). |
-| Flow Rate per Production Well | {{ flowrate_kg_per_sec_per_well }} kg/s | Fercho et al, 2025 models reservoir performance using 100 kg/s per well. The maximum flow rate achieved at Cape Station was 107 kg/s (Fervo Energy, 2024). The announced increased casing diameter implies higher flow rates. |
-| Number of Doublets | {{ number_of_doublets }} | Each well pair (doublet) is expected to initially produce up to 11 MWe (gross) at a 107 kg/s flow rate. A well pair producing 11 MWe gross with ~10% parasitic loss produces approximately 10 MWe net. |
-| Number of Fractures per Well | 200 | The model assumes a "High-Intensity" stimulation design utilizing 25 geometric stages with 8 clusters per stage (Extreme Limited Entry) (Fervo Energy, 2023). |
-| Fracture Separation | {{ fracture_separation_m }} m | Based on number of fractures per lateral and lateral length |
-| Fracture Geometry | {{ fracture_height_m }} m diameter (Circular) | Approximates ellipsoidal fracture with 228 meter height and 152 meter length |
-| Reservoir Volume | {{ reservoir_volume_m3 }} m³ | Calculated from fracture area × fracture separation × number of fractures per well × number of wells |
-| Water Loss Rate | 15% | Water loss rate is conservatively estimated to be between 10 and 20%. Other estimates and some simulations may suggest a significantly lower water loss rate than this conservative estimate. See [Geothermal Mythbusting: Water Use and Impacts](https://fervoenergy.com/geothermal-mythbusting-water-use-and-impacts/) (Fervo Energy, 2025). |
-| Maximum Drawdown | {{ maximum_drawdown_pct ~ '%' }} | This value represents the drop in production temperature compared to the initial temperature that is allowed before the wellfield is redrilled. It is tuned to keep minimum net electricity generation over the project lifetime ≥500 MWe. |
-| Productivity Index | {{ productivity_index_kg_per_sec_per_bar }} kg/s/bar | NREL ATB conservative scenario. Yields ~10% initial pumping power/net installed power. |
-| Injection Temperature | {{ injection_temperature_degc ~ '℃' }} | Calibrated with GEOPHIRES model-calculated reinjection temperature (Beckers & McCabe, 2019). Close to upper bound of Project Red injection temperatures (75–125℉; 23.89–51.67℃) (Norbeck & Latimer, 2023). |
-| Ambient Temperature | {{ ambient_temperature_degc ~ '℃' }} | Average annual temperature of Milford, Utah (NCEI). Note that this value affects heat to power conversion efficiency. The effects of hourly and seasonal ambient temperature fluctuations on efficiency and power generation are not modeled in this version of the case study. |
+| Fervo-implemented Design Simulation (Fig. 18.) | Case Study Equivalent Simulation |
+|---|---|
+|
|
|
{# @formatter:on #}
+While the initial and final (Year 15) temperatures are consistent, the production curves exhibit distinct profiles due to the different modeling approaches:
+
+1. Reference Simulation (Left): The Singh et al. (2025) curve reflects a fully coupled numerical simulation (ResFrac) that accounts for complex fracture heterogeneity, inter-well interference, and variable flow paths. The gradual decline starting around Year 3 indicates thermal dispersion, where cold injection fluid mixes with hot reservoir fluid along faster flow paths earlier in the project life.
+1. GEOPHIRES Simulation (Right): The GEOPHIRES result utilizes the Gringarten (1975) analytical solution for flow in fractured rock. This model assumes a uniform thermal sweep across an idealized fracture surface. Consequently, it maintains a flat, maximum production temperature for a longer duration until the cold front reaches the production well (thermal breakthrough), resulting in a sharper, later decline.
+
+Despite these structural differences, the comparison validates the basis for the case study's reservoir engineering parameters, as the aggregate heat extraction and year-15 endpoint align closely with the numerical simulation baseline.
+
+
## Results
See [Fervo_Project_Cape-4.out](https://github.com/softwareengineerprogrammer/GEOPHIRES/blob/main/tests/examples/Fervo_Project_Cape-4.out)
@@ -139,10 +134,11 @@ in source code for the complete results.
{# @formatter:off #}
| Metric | Result Value | Reference Value(s) | Reference Source |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|------------------|
-| Exploration Costs | {{ '$' ~ exploration_cost_musd ~ 'M' }} | {{ '$' ~ drilling_costs_per_well_musd*5 ~ 'M' }} (2024b ATB NF-EGS conservative scenario exploration assumption of 5 full-size wells. Case study result conservatively includes additional costs for geophysical survey, indirect costs, and contingency.) | NREL, 2025. |
+| WACC | {{ wacc_pct ~ '%' }} | 8.3% | Fervo's target goal is to eventually achieve a "Solar Standard" WACC of 8.3% (Matson, 2024). |
+| Exploration Costs | {{ '$' ~ exploration_cost_musd ~ 'M' }} | {{ '$' ~ drilling_costs_per_well_musd*5 ~ 'M' }} | 2024b ATB NF-EGS conservative scenario exploration assumption of 5 full-size wells (NREL, 2025). Case study result conservatively includes additional costs for geophysical survey, indirect costs, and contingency. |
| Well Drilling and Completion Costs | {{ '$' ~ drilling_costs_musd ~ 'M' }} total ({{ '$' ~ drilling_costs_per_well_musd ~ 'M/well' }}) | $<4M/well | Latimer, 2025. |
| Stimulation Costs | {{ '$' ~ stim_costs_musd ~ 'M' }} total ({{ '$' ~ stim_costs_per_well_musd ~ 'M/well' }}) | $4.65M/well (based on 46%:54% drilling:stimulation cost ratio) | Yusifov & Enriquez, 2025. |
-| Surface Power Plant Costs | {{ '$' ~ surface_power_plant_costs_gusd ~ 'B' }} | Calculated with GEOPHIRES [built-in power plant cost correlation](Theoretical-Basis-for-GEOPHIRES.html#cost-correlations-capital-and-o-m); pricing information not publicly available for Turboden Gen2 ORC units. | Turboden, 2025. |
+| Surface Power Plant Costs | {{ '$' ~ surface_power_plant_costs_gusd ~ 'B' }} | | |
| Field Gathering System Costs | {{ '$' ~ field_gathering_cost_musd ~ 'M' }} ({{ field_gathering_cost_pct_occ ~ '%' }} of OCC) | 2% of OCC | Matson, 2024. |
| Overnight Capital Cost | {{ '$' ~ occ_gusd ~ 'B' }} | | |
| Total CAPEX | {{ '$' ~ total_capex_gusd ~ 'B' }} (OCC + interest and inflation during construction) | | |
@@ -156,15 +152,21 @@ in source code for the complete results.
| Metric | Result Value | Reference Value(s) | Reference Source |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Total fracture surface area per well | {{ total_fracture_surface_area_per_well_mm2 }}×10⁶ m² ({{ total_fracture_surface_area_per_well_mft2 }} million ft²) | Project Red: 2.787×10⁶ m² (30 million ft²) | Greater fracture surface area expected than Project Red (Fercho et al, 2025). |
-| Bottom-hole Temperature (BHT) | {{ bht_temp_degc ~ '℃' }} | 200℃ | Fercho et al., 2024. |
-| Average Production Temperature | {{ average_production_temperature_degc }} ℃ | 204℃, 190.6–198.6℃ (optimal plant operating range) | Trent, 2024; Norbeck et al, 2024. |
+| Reservoir Volume | {{ reservoir_volume_m3 }} m³ | | Calculated from fracture area × fracture separation × number of fractures per well × number of wells |
+| Bottom-hole Temperature (BHT) | {{ bht_temp_degc ~ '℃' }} | 200–241℃ | Fercho et al., 2024; Singh et al., 2025. |
+| Initial Production Temperature | {{ initial_production_temperature_degc ~ '℃' }} | 196–208℃ | Approximate range of initial production temperatures between shallower and deeper producers (Singh et al., 2025).|
+| Average Production Temperature | {{ average_production_temperature_degc ~ '℃' }} | 199–209℃ | Approximate range of thermally conditioned production temperatures between shallower and deeper producers (Singh et al., 2025). |
+| Maximum Total Electricity Generation | {{ max_total_generation_mwe }} MW | 600 MW (10 × 60 MWe Gen 2 ORCs) | Actual maximum total (gross) generation will be constrained by the combined nameplate capacity of modular power plants which are not individually modeled in this case study. A total of 8 60 MWe Gen 2 ORCs have been announced for Phase II; 3 from Turboden and 5 from Baker Hughes. This equates to 480 MW gross capacity for Phase II's 400 MW net capacity. An equivalent SOAK 500 MW project would therefore require 10 Gen 2 ORC units (Turboden, 2025; Jacobs, 2025). |
| Minimum Net Electricity Generation | {{ min_net_generation_mwe }} MW | 500 MW | The announced upsizing to 500 MWe (Fervo Energy, 2025) is interpreted to mean that Cape Station's net electricity generation does not fall below 500 MWe. |
-| Average Net Electricity Generation | {{ avg_net_generation_mwe }} MW | | |
+| 2-year Average Net Power Production per Production Well | {{ two_year_avg_net_power_mwe_per_production_well }} MW. (Note that net power decline is not observed until approximately Year 10 due to thermal conditioning of the production wellbores predicted by the Ramey wellbore heat transmission model.) | 7.6–11.5 MW | Figures 4 and 12 (Singh et al., 2025). |
+| Injection Pumping Parasitic Load (Average Pumping Power/Average Total Electricity Generation) | {{ parasitic_loss_pct ~ '%' }} | Upper bound: 16.7% total on-site consumption (including injection pumping power) | Procurement of 480 MW of Gen 2 ORC units for 400 MW net capacity in Phase II allows for up to 80 MW on-site consumption (16.7%). |
+| Average Net Electricity Generation | {{ avg_net_generation_mwe }} MW | | |
| Maximum Net Electricity Generation | {{ max_net_generation_mwe}} MW | | |
-| Maximum Total Electricity Generation | {{ max_total_generation_mwe }} MW | Actual maximum total (gross) generation will be constrained by the combined nameplate capacity of modular power plants which are not individually modeled in this case study. Turboden has announced delivery of three 60 MWe ORC units; 10 such units would be required to support maximum total generation between 540 and 600 MWe. | Turboden, 2025. |
| Number of times redrilling | {{ number_of_times_redrilling }} | 2–5 | Redrilling expected to be required within 5–10 years of project start |
+| Total wells drilled over project lifetime | {{ total_wells_including_redrilling }} | 320 total wells permitted by BLM | BLM, 2024. |
{# @formatter:on #}
+
### Sensitivity Analysis
The following charts show the sensitivity of key metrics to various inputs.
@@ -290,10 +292,14 @@ https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Gradl.pdf
Horne, R., Genter, A., McClure, M. et al. (2025) Enhanced geothermal systems for clean firm energy generation. Nat. Rev.
Clean Technol. 1, 148–160. https://doi.org/10.1038/s44359-024-00019-9
-Jacobs, Trent. (2024, September 16). Fervo and FORGE Report Breakthrough Test Results, Signaling More Progress for
+Jacobs, Trent. (2024, September 16). Fervo and FORGE Report Breakthrough Test Results, Signaling More Progress for
Enhanced
Geothermal. https://jpt.spe.org/fervo-and-forge-report-breakthrough-test-results-signaling-more-progress-for-enhanced-geothermal
+Jacobs, Trent. (2025, September 5). Baker Hughes Nabs Award for Next Phase of Fervo Energy's Geothermal Power Plant in
+Utah.
+https://jpt.spe.org/baker-hughes-nabs-award-for-next-phase-of-fervo-energygeothermal-power-plant-in-utah
+
Ko, S., Ghassemi, A., & Uddenberg, M. (2023). Selection and Testing of Proppants for EGS.
Proceedings, 48th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Ko.pdf
@@ -330,14 +336,32 @@ Oil. https://quantumprot.com/uploads/images/2b8583e8ce8038681a19d5ad1314e204.pdf
Shiozawa, S., & McClure, M. (2014). EGS Designs with Horizontal Wells, Multiple Stages, and Proppant. ResFrac.
https://www.resfrac.com/wp-content/uploads/2024/07/Shiozawa.pdf
+Singh, A., Galban, G., McClure, M. (2025, June 9).
+Proceedings of the 2025 Unconventional Resources Technology Conference.
+https://www.resfrac.com/wp-content/uploads/2025/06/Singh-2025-Fervo-Project-Cape.pdf
+
Southern Utah University. (2024, October 23). Fervo Energy, Southern Utah University, and Elemental Impact Launch
Geothermal Drilling & Completions Apprenticeship Program.
https://www.suu.edu/news/2024/10/geothermal-energy-joint-campaign.html
-Turboden. (2025, October 2). Turboden selected to deliver 180 MW of Fervo’s Gen 2 ORC Power Plants at Cape Station in Utah. https://www.turboden.com/company/media/press/press-releases/4881/turboden-selected-to-deliver-180-mw-of-fervos-gen-2-orc-power-plants-at-cape-station-in-utah
+Turboden. (2025, October 2). Turboden selected to deliver 180 MW of Fervo’s Gen 2 ORC Power Plants at Cape Station in
+Utah. https://www.turboden.com/company/media/press/press-releases/4881/turboden-selected-to-deliver-180-mw-of-fervos-gen-2-orc-power-plants-at-cape-station-in-utah
+
+U.S. Department of the Interior Bureau of Land Management. (2024, October).
+Finding of No Significant Impact and Decision Record DOI-BLM-UT-C010-2024-0018-EA.
+https://eplanning.blm.gov/public_projects/2033002/200625761/20120795/251020775/DOI-BLM-UT-C010-2024-0018-EA_FONSI_DR_%20Fervo%20EA_signed.pdf
US DOE. (2021). Combined Heat and Power Technology Fact Sheet Series: Waste Heat to
Power. https://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/Waste_Heat_to_Power_Fact_Sheet.pdf
+Xing, P., England, K., Moore, J., McLennan, J. (2025, February 10).
+Analysis of the 2024 Circulation Tests at Utah FORGE and the Response of Fiber Optic Sensing
+Data.
+https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2025/Xing2.pdf
+
+Yearsley, E., Kombrink, H. (2024, November 6).
+A critical look at Fervo dataset suggests lower output.
+https://geoexpro.com/a-critical-look-at-fervo-dataset-suggests-lower-output/
+
Yusifov, M., & Enriquez, N. (2025, July). From Core to Code: Powering the Al Revolution with Geothermal Energy.
Project InnerSpace. https://projectinnerspace.org/resources/Powering-the-AI-Revolution.pdf
diff --git a/docs/_images/fervo_project_cape-4-net-power-production.png b/docs/_images/fervo_project_cape-4-net-power-production.png
new file mode 100644
index 00000000..5297f55e
Binary files /dev/null and b/docs/_images/fervo_project_cape-4-net-power-production.png differ
diff --git a/docs/_images/fervo_project_cape-4-production-temperature.png b/docs/_images/fervo_project_cape-4-production-temperature.png
new file mode 100644
index 00000000..4ede93b7
Binary files /dev/null and b/docs/_images/fervo_project_cape-4-production-temperature.png differ
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.png b/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.png
index e692f485..1321e0fe 100644
Binary files a/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.png and b/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.png differ
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.svg b/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.svg
index c4aa154b..c775743a 100644
--- a/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.svg
+++ b/docs/_images/fervo_project_cape-4-sensitivity-analysis-irr.svg
@@ -6,7 +6,7 @@
- 2026-01-06T09:23:36.880348
+ 2026-01-12T16:10:52.508832
image/svg+xml
@@ -38,30 +38,30 @@ z
" style="fill: #ffffff"/>
-
+
-
+
-
-
+
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
+
-
-
-
+
+
+
+
-
+
-
+
-
-
-
+
+
+
-
+
-
+
-
-
-
-
+
+
+
-
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
+
@@ -372,8 +392,8 @@ z
-
-
+
+
@@ -726,8 +746,8 @@ z
-
-
+
+
@@ -953,8 +973,8 @@ z
-
-
+
+
@@ -1035,33 +1055,9 @@ z
-
+
-
-
+
@@ -1132,8 +1128,8 @@ z
-
-
+
+
@@ -1171,7 +1167,7 @@ z
-
+
+
-
+
@@ -1217,8 +1223,8 @@ z
-
-
+
+
@@ -1330,8 +1336,8 @@ z
-
-
+
+
@@ -1434,8 +1440,8 @@ z
-
-
+
+
@@ -1507,19 +1513,19 @@ L 777.635625 97.55355
" style="fill: none; stroke: #aaaaaa; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
@@ -1528,10 +1534,10 @@ z
-
-
-
-
+
+
+
+
-
-
-
+
-
+
-
-
-
-
+
+
+
+
-
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -1709,19 +1744,19 @@ z
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
@@ -1729,88 +1764,80 @@ z
-
-
-
-
+
+
+
+
-
+
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
+
+
+
+
-
-
+
-
-
+
+
-
+
@@ -1896,19 +1902,19 @@ z
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
+
-
-
+
+
-
+
@@ -2040,19 +2071,45 @@ z
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
+
+
+
@@ -2064,78 +2121,88 @@ z
-
-
-
-
-
-
-
+
+
+
+
-
+
-
-
-
-
-
-
+
+
+
+
+
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
@@ -2152,55 +2219,45 @@ z
-
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
+
+
+
+
-
+
-
+
@@ -2210,10 +2267,10 @@ z
-
-
+
+
-
+
@@ -2222,36 +2279,36 @@ z
-
-
-
-
-
-
+
+
+
+
+
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
+
+
+
+
-
+
@@ -2260,31 +2317,31 @@ z
-
-
-
+
+
+
-
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
@@ -2298,44 +2355,67 @@ z
-
-
-
-
+
+
+
+
+
+
+
-
+
-
-
-
-
-
-
+
+
+
+
+
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
@@ -2348,41 +2428,41 @@ z
-
-
-
+
+
+
-
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
-
-
-
+
+
+
+
-
+
-
+
-
-
-
-
+
+
+
+
-
+
-
+
-
-
+
+" clip-path="url(#paa2f7544c4)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
@@ -2456,117 +2572,103 @@ z
-
-
-
-
+
+
+
+
-
+
-
+
-
-
-
-
-
+
+
+
+
+
-
+
-
-
-
+
+
+" clip-path="url(#paa2f7544c4)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+" clip-path="url(#paa2f7544c4)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
-
-
-
-
-
+
+
+
+
+
-
+
-
-
-
+
+
+" clip-path="url(#paa2f7544c4)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
-
+
-
+
-
+
-
-
-
+
+
-
-
+
+
-
@@ -2954,16 +3034,16 @@ z
-
+
-
+
-
+
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.png b/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.png
index 0af6c506..2e173f19 100644
Binary files a/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.png and b/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.png differ
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.svg b/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.svg
index 02fc92d8..86a34a22 100644
--- a/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.svg
+++ b/docs/_images/fervo_project_cape-4-sensitivity-analysis-lcoe.svg
@@ -6,7 +6,7 @@
- 2026-01-06T09:23:37.855751
+ 2026-01-12T16:10:53.209988
image/svg+xml
@@ -38,30 +38,30 @@ z
" style="fill: #ffffff"/>
-
+
-
+
-
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1204,7 +1204,7 @@ z
-
+
+
-
+
@@ -1562,49 +1572,39 @@ L 777.635625 97.55355
" style="fill: none; stroke: #aaaaaa; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
-
-
-
+
+
+
-
-
+
@@ -1649,19 +1649,19 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -1669,11 +1669,161 @@ z
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
@@ -1848,172 +1983,10 @@ z
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
+
@@ -2030,12 +2003,44 @@ z
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
@@ -2045,23 +2050,23 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+
-
+
@@ -2070,12 +2075,12 @@ z
-
-
-
-
+
+
+
+
-
+
@@ -2085,33 +2090,33 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+
-
+
-
+
@@ -2122,9 +2127,9 @@ z
-
-
-
+
+
+
-
-
+
@@ -2186,12 +2159,12 @@ z
-
-
-
-
+
+
+
+
-
+
@@ -2201,19 +2174,19 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -2226,12 +2199,12 @@ z
-
-
-
-
+
+
+
+
-
+
@@ -2241,19 +2214,19 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -2268,34 +2241,13 @@ z
-
-
-
-
-
-
+
+
+
-
+
@@ -2305,12 +2257,12 @@ z
-
-
-
-
+
+
+
+
-
+
@@ -2320,58 +2272,29 @@ z
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
-
+
@@ -2432,13 +2355,82 @@ z
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
@@ -2447,20 +2439,20 @@ z
-
-
-
+
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
@@ -2470,10 +2462,10 @@ z
-
-
+
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
+
+
-
+
-
-
+
+
-
-
-
-
+
@@ -2603,11 +2582,11 @@ z
-
-
-
-
-
+
+
+
+
+
@@ -2618,24 +2597,24 @@ z
-
-
-
+
+
+" clip-path="url(#p6e0ea0283e)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
-
+
+
+
+
-
+
@@ -2644,40 +2623,40 @@ z
-
-
+
+
-
+
-
-
-
+
+
+
-
-
+
+
-
+
-
-
+
+
-
+
@@ -2690,13 +2669,13 @@ z
-
-
-
-
-
+
+
+
+
+
-
+
@@ -2705,9 +2684,9 @@ z
-
+
-
+
-
-
-
+
+
-
-
+
+
+
@@ -3133,9 +3131,9 @@ z
-
+
-
+
@@ -3146,7 +3144,7 @@ z
-
+
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.png b/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.png
index 230a0956..bfdb8c0a 100644
Binary files a/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.png and b/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.png differ
diff --git a/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.svg b/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.svg
index b986bfc0..25f42d33 100644
--- a/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.svg
+++ b/docs/_images/fervo_project_cape-4-sensitivity-analysis-project_npv.svg
@@ -6,7 +6,7 @@
- 2026-01-06T09:23:38.311060
+ 2026-01-12T16:10:54.967504
image/svg+xml
@@ -38,30 +38,30 @@ z
" style="fill: #ffffff"/>
-
+
-
+
-
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -205,18 +205,18 @@ L 627.224362 97.55355
-
+
-
+
-
+
@@ -1117,7 +1117,7 @@ z
-
+
-
+
@@ -1222,7 +1222,7 @@ z
-
+
+
-
+
@@ -1560,19 +1570,19 @@ L 777.635625 97.55355
" style="fill: none; stroke: #aaaaaa; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -1582,9 +1592,9 @@ z
-
-
-
+
+
+
+
+
-
-
-
-
+
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+
-
+
-
-
+
+
-
+
-
+
-
+
@@ -1892,19 +1931,19 @@ z
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -1913,42 +1952,10 @@ z
-
-
-
+
+
+
-
-
-
-
-
+
+
+
-
+
-
-
-
+
+
+
-
-
-
+
+
+
-
+
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #808080; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+
-
+
-
+
-
+
-
-
-
-
+
@@ -2097,19 +2053,19 @@ z
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #b0b0b0; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
-
-
-
+
+
+
+
+
+
-
-
-
-
-
-
+
+
+
+
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #4ab67d; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
-
-
+
+
+
-
+
@@ -2191,9 +2154,9 @@ z
-
+
-
+
@@ -2206,19 +2169,19 @@ z
-
-
+
+" clip-path="url(#paff05a9722)" style="fill: #84d1a8; stroke: #ffffff; stroke-width: 0.5; stroke-linejoin: miter"/>
-
+
-
+
@@ -2231,48 +2194,92 @@ z
-
-
-
+
+
+
+
+