Skip to content
This repository was archived by the owner on Jan 30, 2024. It is now read-only.

glm() in R #203

@DOC-fau

Description

@DOC-fau

This is my first issue on github. Hopefully I´m doing this right. :)

I´m currently working at my fist R-Project (analysis of people who didn´t Vote 2017). After working in SPSS I´m still a little spoiled and inexperienced. My glm() gives me this output (for simplicity are some variables omitted):

Call:
glm(formula = didVote ~ dutyVote + knowPol + trustBT + suppDemo + 
    finSit + reli + polDontCare + trustTV, family = binomial(link = "logit"), 
    data = main_df_logReg)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.9645  -0.3386  -0.2142  -0.1442   3.2620  

Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                      -2.21417    0.58345  -3.795 0.000148 ***
dutyVoteSTIMME EHER ZU            1.06863    0.22404   4.770 1.84e-06 ***
dutyVoteSTIMME EHER NICHT ZU      2.10750    0.26583   7.928 2.23e-15 ***
dutyVoteSTIMME GAR NICHT ZU       2.97954    0.37621   7.920 2.38e-15 ***
knowPolSTIMME EHER ZU            -0.66593    0.30260  -2.201 0.027758 *  
knowPolSTIMME EHER NICHT ZU      -1.20141    0.29884  -4.020 5.81e-05 ***
knowPolSTIMME GAR NICHT ZU       -1.74414    0.35273  -4.945 7.62e-07 ***
...
polDontCareSTIMME EHER ZU        -0.50314    0.22466  -2.240 0.025123 *  
polDontCareSTIMME EHER NICHT ZU  -0.65473    0.28136  -2.327 0.019965 *  
polDontCareSTIMME GAR NICHT ZU    0.66562    0.48578   1.370 0.170620    
trustTV2                         -0.62537    0.32471  -1.926 0.054111 .  
trustTV3                         -0.72035    0.32317  -2.229 0.025815 *  
trustTV4                         -0.43365    0.31576  -1.373 0.169648    
trustTV5                         -0.57380    0.39109  -1.467 0.142327    
trustTV6                         -0.80410    0.60836  -1.322 0.186247    
trustTVGROßES VERTRAUEN           1.16441    0.61639   1.889 0.058882 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1227.12  on 2232  degrees of freedom
Residual deviance:  882.73  on 2197  degrees of freedom
AIC: 954.73

Number of Fisher Scoring iterations: 13
Analysis of Deviance Table (Type II tests)

Response: didVote
            Df   Chisq Pr(>Chisq)    
dutyVote     3 103.182  < 2.2e-16 ***
knowPol      3  29.710  1.588e-06 ***
trustBT      6  19.173   0.003882 ** 
suppDemo     5  19.231   0.001741 ** 
finSit       4  13.648   0.008510 ** 
reli         5  20.030   0.001234 ** 
polDontCare  3  11.585   0.008947 ** 
trustTV      6  14.170   0.027794 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

By a dependend variable didVote (NA´s are dropped), which depicts if one did vote in BTW 2017:

JA (Yes): 2951
NEIN (No): 518
NA's: 8

and an example out of one of my independend variables dutyVote, which depicts the approval of the statement: "In democracy it is everyones duty to vote regularly." (I´m assuming that didVote is metric (Likert-scale).) :

STIMME VOLL ZU (agree totally):     2555
STIMME EHER ZU (agree partly):     598
STIMME EHER NICHT ZU (disagree partly):     205
STIMME GAR NICHT ZU (disagree totally):     93
NA's:     26 

It might be very difficult to interpret this output without context, but my question more theoretical.
First I´d like to know, why my glm() doesn´t print every item but only those three you can see above. Is it due to missing significance of some items?
Second, I´d like to know If the following interpretation would be correct:
"The higher the approval of "In democracy it is everyones duty to vote regularly." it is more likely that one did vote 2017."_
How would you interpret this correlation, if some items are insignificant?

This is only an example of my glm(). I will probably recode some variables, because I´m not positive about the scales of measurement (e. g. dutyVote).

Many results of a previous search doesn´t use a metric level of measurement and if you want to reproduce my glm(), I could attache my r-script and the dataframe.
Thanks for any answer! :)

Metadata

Metadata

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions