-
Notifications
You must be signed in to change notification settings - Fork 3
glm() in R #203
Description
This is my first issue on github. Hopefully I´m doing this right. :)
I´m currently working at my fist R-Project (analysis of people who didn´t Vote 2017). After working in SPSS I´m still a little spoiled and inexperienced. My glm() gives me this output (for simplicity are some variables omitted):
Call:
glm(formula = didVote ~ dutyVote + knowPol + trustBT + suppDemo +
finSit + reli + polDontCare + trustTV, family = binomial(link = "logit"),
data = main_df_logReg)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9645 -0.3386 -0.2142 -0.1442 3.2620
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.21417 0.58345 -3.795 0.000148 ***
dutyVoteSTIMME EHER ZU 1.06863 0.22404 4.770 1.84e-06 ***
dutyVoteSTIMME EHER NICHT ZU 2.10750 0.26583 7.928 2.23e-15 ***
dutyVoteSTIMME GAR NICHT ZU 2.97954 0.37621 7.920 2.38e-15 ***
knowPolSTIMME EHER ZU -0.66593 0.30260 -2.201 0.027758 *
knowPolSTIMME EHER NICHT ZU -1.20141 0.29884 -4.020 5.81e-05 ***
knowPolSTIMME GAR NICHT ZU -1.74414 0.35273 -4.945 7.62e-07 ***
...
polDontCareSTIMME EHER ZU -0.50314 0.22466 -2.240 0.025123 *
polDontCareSTIMME EHER NICHT ZU -0.65473 0.28136 -2.327 0.019965 *
polDontCareSTIMME GAR NICHT ZU 0.66562 0.48578 1.370 0.170620
trustTV2 -0.62537 0.32471 -1.926 0.054111 .
trustTV3 -0.72035 0.32317 -2.229 0.025815 *
trustTV4 -0.43365 0.31576 -1.373 0.169648
trustTV5 -0.57380 0.39109 -1.467 0.142327
trustTV6 -0.80410 0.60836 -1.322 0.186247
trustTVGROßES VERTRAUEN 1.16441 0.61639 1.889 0.058882 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1227.12 on 2232 degrees of freedom
Residual deviance: 882.73 on 2197 degrees of freedom
AIC: 954.73
Number of Fisher Scoring iterations: 13
Analysis of Deviance Table (Type II tests)
Response: didVote
Df Chisq Pr(>Chisq)
dutyVote 3 103.182 < 2.2e-16 ***
knowPol 3 29.710 1.588e-06 ***
trustBT 6 19.173 0.003882 **
suppDemo 5 19.231 0.001741 **
finSit 4 13.648 0.008510 **
reli 5 20.030 0.001234 **
polDontCare 3 11.585 0.008947 **
trustTV 6 14.170 0.027794 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
By a dependend variable didVote (NA´s are dropped), which depicts if one did vote in BTW 2017:
JA (Yes): 2951
NEIN (No): 518
NA's: 8
and an example out of one of my independend variables dutyVote, which depicts the approval of the statement: "In democracy it is everyones duty to vote regularly." (I´m assuming that didVote is metric (Likert-scale).) :
STIMME VOLL ZU (agree totally): 2555
STIMME EHER ZU (agree partly): 598
STIMME EHER NICHT ZU (disagree partly): 205
STIMME GAR NICHT ZU (disagree totally): 93
NA's: 26
It might be very difficult to interpret this output without context, but my question more theoretical.
First I´d like to know, why my glm() doesn´t print every item but only those three you can see above. Is it due to missing significance of some items?
Second, I´d like to know If the following interpretation would be correct:
"The higher the approval of "In democracy it is everyones duty to vote regularly." it is more likely that one did vote 2017."_
How would you interpret this correlation, if some items are insignificant?
This is only an example of my glm(). I will probably recode some variables, because I´m not positive about the scales of measurement (e. g. dutyVote).
Many results of a previous search doesn´t use a metric level of measurement and if you want to reproduce my glm(), I could attache my r-script and the dataframe.
Thanks for any answer! :)