Skip to content

Commit 03237fc

Browse files
committed
Update exercise12_MusicGenreClassification.ipynb
1 parent 1f44f17 commit 03237fc

File tree

1 file changed

+12
-10
lines changed

1 file changed

+12
-10
lines changed

exercise12_MusicGenreClassification.ipynb

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -84,8 +84,8 @@
8484
"from sklearn.model_selection import train_test_split\n",
8585
"from sklearn.preprocessing import OneHotEncoder, LabelBinarizer\n",
8686
"import tensorflow as tf\n",
87-
"import tensorflow.keras as keras\n",
88-
"import tensorflow.keras.backend as K\n",
87+
"from tensorflow import keras\n",
88+
"from keras import backend as K\n",
8989
"import time\n",
9090
"\n",
9191
"\n",
@@ -142,7 +142,9 @@
142142
"print(root_logdir)\n",
143143
"print(kt_logdir) # folder for keras tuner results\n",
144144
"print(tf_kt_logdir) # folder for TF checkpoints while keras tuning\n",
145-
"print(tf_logdir) # folder for TF checkpoint for best model training"
145+
"print(tf_logdir) # folder for TF checkpoint for best model training\n",
146+
"\n",
147+
"os.makedirs(tf_logdir, exist_ok=True)"
146148
]
147149
},
148150
{
@@ -468,7 +470,7 @@
468470
"metadata": {},
469471
"outputs": [],
470472
"source": [
471-
"encoder = OneHotEncoder(sparse=False)\n",
473+
"encoder = OneHotEncoder(sparse_output=False)\n",
472474
"# we encode as one-hot for TF model\n",
473475
"Y = encoder.fit_transform(Y.reshape(-1, 1))"
474476
]
@@ -546,7 +548,7 @@
546548
"def build_model(hp): # with hyper parameter ranges\n",
547549
" model = keras.Sequential()\n",
548550
" # input layer\n",
549-
" model.add(keras.Input(shape=nx))\n",
551+
" model.add(keras.Input(shape=(nx,)))\n",
550552
" # hidden layers\n",
551553
" for layer in range(hp.Int(\"no_layers\", 1, 5)):\n",
552554
" model.add(\n",
@@ -594,7 +596,7 @@
594596
"model = build_model(kt.HyperParameters())\n",
595597
"hptuner = kt.RandomSearch(\n",
596598
" hypermodel=build_model,\n",
597-
" objective=\"val_categorical_accuracy\", # check performance on val data!\n",
599+
" objective=\"val_loss\", # check performance on val data!\n",
598600
" max_trials=max_trials,\n",
599601
" executions_per_trial=executions_per_trial,\n",
600602
" overwrite=True,\n",
@@ -653,7 +655,7 @@
653655
"# we might check (train) the best XX models in detail\n",
654656
"# for didactical purpose we choose only the very best one, located in [0]:\n",
655657
"model = hptuner.get_best_models(num_models=1)[0]\n",
656-
"model.save(tf_logdir + \"/best_model\")"
658+
"model.save(tf_logdir + \"/best_model.keras\")"
657659
]
658660
},
659661
{
@@ -690,7 +692,7 @@
690692
"outputs": [],
691693
"source": [
692694
"# load best model and reset weights\n",
693-
"model = keras.models.load_model(tf_logdir + \"/best_model\")\n",
695+
"model = keras.models.load_model(tf_logdir + \"/best_model.keras\")\n",
694696
"reset_weights(model) # start training from scratch\n",
695697
"print(model.summary())"
696698
]
@@ -725,7 +727,7 @@
725727
" callbacks=[earlystopping_cb, tensorboard_cb],\n",
726728
" verbose=1,\n",
727729
")\n",
728-
"model.save(tf_logdir + \"/trained_best_model\")\n",
730+
"model.save(tf_logdir + \"/trained_best_model.keras\")\n",
729731
"print(model.summary())"
730732
]
731733
},
@@ -849,7 +851,7 @@
849851
"name": "python",
850852
"nbconvert_exporter": "python",
851853
"pygments_lexer": "ipython3",
852-
"version": "3.10.6"
854+
"version": "3.12.3"
853855
}
854856
},
855857
"nbformat": 4,

0 commit comments

Comments
 (0)