You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: slides/ddasp_exercise_slides.tex
+36-26Lines changed: 36 additions & 26 deletions
Original file line number
Diff line number
Diff line change
@@ -123,6 +123,7 @@
123
123
\href{https://probml.github.io/pml-book/book1.html}{current draft as free pdf}
124
124
\item\href{https://math.mit.edu/~gs/}{G. Strang} (2019): "Linear Algebra and Learning from Data", Wellesley, 1st ed.
125
125
\item S. Raschka, Y. Liu, V. Mirjalili (2022): "Machine Learning with PyTorch and Scikit-Learn", Packt, 1st ed.
126
+
\item J.A. Fessler, R.R. Nadakuditi (2024): "Linear Algebra for Data Science, Machine Learning, and Signal Processing", Cambridge University Press, 1st ed.
126
127
\end{itemize}
127
128
\end{frame}
128
129
@@ -270,7 +271,7 @@ \subsection{Exercise 02}
270
271
Objectives
271
272
\begin{itemize}
272
273
\item recap important matrix factorizations
273
-
\item recap eigenvalues/eigenvectors
274
+
\item recap eigenvalues / eigenvectors
274
275
\item spectral theorem
275
276
\item SVD as a fundamental matrix factorization
276
277
\end{itemize}
@@ -281,13 +282,13 @@ \subsection{Exercise 02}
281
282
282
283
\begin{frame}{Matrix Factorization from Eigenwert Problem for Square Matrix}
283
284
284
-
for square matrix $\bm{A}_{M \times M}$ we can have a factorization (known as diagonalization)
285
+
for \underline{square} matrix $\bm{A}_{M \times M}$ we can have a factorization (known as diagonalization)
285
286
286
287
$$\bm{A} = \bm{X} \bm{\Lambda} \bm{X}^{-1}$$
287
288
288
289
(but only) when $M$ independent eigenvectors as columns in $\bm{X}$ (only then $\bm{X}^{-1}$ is possible)
289
290
290
-
with the corresponding eigenvalues $\lambda$ in the diagonal matrix $\Lambda$
291
+
with the corresponding eigenvalues $\lambda$ in the diagonal matrix $\bm{\Lambda}$
291
292
292
293
\begin{center}
293
294
$
@@ -301,15 +302,15 @@ \subsection{Exercise 02}
301
302
$
302
303
\end{center}
303
304
304
-
the matrix is acting onto $m$-th eigenvector as
305
+
the matrix is acting onto the $m$-th eigenvector as
305
306
306
307
$$\bm{A} \bm{x}_m = \lambda_m \bm{x}_m$$
307
308
308
-
$\Lambda$ might be complex-valued
309
+
$\bm{\Lambda}$ might be complex-valued
309
310
310
311
$\bm{X}$ might be complex-valued
311
312
312
-
if $\lambda_m=0$ we get $\bm{A} \bm{x}_m = 0\cdot\bm{x}_m = \bm{0}$, i.e. $\bm{A}$ is a singular matrix, i.e. $\bm{A}$ is a non-full rank matrix
313
+
if $\lambda_m=\textcolor{C3}{0}$ we get $\bm{A} \bm{x}_m = \textcolor{C3}{0}\cdot\bm{x}_m = \bm{0}$, i.e. $\bm{A}$ is a singular matrix, i.e. $\bm{A}$ is a non-full rank matrix
313
314
314
315
rank of matrix $\bm{A}$ is $R$ == number of non-zero eigenvalues
315
316
@@ -320,13 +321,16 @@ \subsection{Exercise 02}
320
321
321
322
\begin{frame}{Matrix Factorization from Eigenwert Problem for Symmetric Matrix}
322
323
323
-
for \underline{Hermitian} matrix $\bm{A}_{M \times M} = \bm{A}_{M \times M}^H$ we can have a special case of diagonalization
324
+
for \textcolor{C0}{\underline{Hermitian}} matrix $\bm{A}_{M \times M} = \bm{A}_{M \times M}^H$
325
+
326
+
and a dedicated \underline{unitary} matrix $\bm{Q}$ (i.e. it holds $\bm{Q} \bm{Q}^H = \bm{I}$, $\bm{Q}^H \bm{Q} = \bm{I}$)
324
327
328
+
special case of diagonalization, known as \underline{spectral theorem}:
0 commit comments