Skip to content

Commit 81438f4

Browse files
author
Anastasia
committed
Minor modifications
1 parent ecde677 commit 81438f4

File tree

1 file changed

+33
-43
lines changed

1 file changed

+33
-43
lines changed

DenoisingAutoencoder/Denoising-Autoencoder-using-Tensorflow.ipynb

Lines changed: 33 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -7,18 +7,22 @@
77
"outputs": [],
88
"source": [
99
"import numpy as np\n",
10-
"import sys\n",
11-
"import tensorflow as tf\n",
1210
"import matplotlib.pyplot as plt\n",
13-
"from tensorflow.keras import Sequential, Model\n",
11+
"\n",
1412
"from tensorflow.keras.layers import (\n",
1513
" Conv2D,\n",
1614
" MaxPooling2D,\n",
1715
" Conv2DTranspose,\n",
1816
" Flatten,\n",
1917
" Dense\n",
2018
")\n",
19+
"from tensorflow.keras import Sequential, Model\n",
2120
"from tensorflow.keras.utils import to_categorical\n",
21+
"\n",
22+
"import os\n",
23+
"import random\n",
24+
"import tensorflow as tf\n",
25+
"\n",
2226
"%matplotlib inline"
2327
]
2428
},
@@ -35,27 +39,13 @@
3539
"metadata": {},
3640
"outputs": [],
3741
"source": [
38-
"import os\n",
39-
"import random\n",
40-
"\n",
42+
"# settings for reproducibility\n",
4143
"seed = 42\n",
42-
"# reproducibility on CPU\n",
4344
"random.seed(seed)\n",
4445
"tf.random.set_seed(seed)\n",
4546
"np.random.seed(seed)\n",
4647
"\n",
47-
"# reproducibility on GPU\n",
48-
"os.environ['TF_DETERMINISTIC_OPS'] = '1'\n",
49-
"\n",
50-
"is_use_gpu = True\n",
51-
"\n",
52-
"if is_use_gpu:\n",
53-
" gpu_devices = tf.config.list_physical_devices('GPU')\n",
54-
" tf.config.experimental.set_visible_devices(gpu_devices[0], 'GPU')\n",
55-
" tf.config.experimental.set_memory_growth(gpu_devices[0], True)\n",
56-
" os.environ['TF_USE_CUDNN'] = '1'\n",
57-
"else:\n",
58-
" os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\""
48+
"os.environ['TF_DETERMINISTIC_OPS'] = '1'"
5949
]
6050
},
6151
{
@@ -366,55 +356,55 @@
366356
"text": [
367357
"Train on 60000 samples, validate on 10000 samples\n",
368358
"Epoch 1/25\n",
369-
"60000/60000 [==============================] - 8s 126us/sample - loss: 0.5725 - val_loss: 0.4929\n",
359+
"60000/60000 [==============================] - 8s 130us/sample - loss: 0.5725 - val_loss: 0.4929\n",
370360
"Epoch 2/25\n",
371-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.4393 - val_loss: 0.3462\n",
361+
"60000/60000 [==============================] - 6s 93us/sample - loss: 0.4393 - val_loss: 0.3462\n",
372362
"Epoch 3/25\n",
373-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.2448 - val_loss: 0.2063\n",
363+
"60000/60000 [==============================] - 6s 93us/sample - loss: 0.2448 - val_loss: 0.2063\n",
374364
"Epoch 4/25\n",
375-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.1895 - val_loss: 0.1741\n",
365+
"60000/60000 [==============================] - 6s 92us/sample - loss: 0.1895 - val_loss: 0.1741\n",
376366
"Epoch 5/25\n",
377-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1671 - val_loss: 0.1590\n",
367+
"60000/60000 [==============================] - 6s 95us/sample - loss: 0.1671 - val_loss: 0.1590\n",
378368
"Epoch 6/25\n",
379-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1548 - val_loss: 0.1485\n",
369+
"60000/60000 [==============================] - 6s 93us/sample - loss: 0.1548 - val_loss: 0.1485\n",
380370
"Epoch 7/25\n",
381-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1457 - val_loss: 0.1407\n",
371+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1457 - val_loss: 0.1407\n",
382372
"Epoch 8/25\n",
383-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1389 - val_loss: 0.1349\n",
373+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1389 - val_loss: 0.1349\n",
384374
"Epoch 9/25\n",
385-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1342 - val_loss: 0.1310\n",
375+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1342 - val_loss: 0.1310\n",
386376
"Epoch 10/25\n",
387-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1308 - val_loss: 0.1281\n",
377+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1308 - val_loss: 0.1281\n",
388378
"Epoch 11/25\n",
389-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1284 - val_loss: 0.1259\n",
379+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1284 - val_loss: 0.1259\n",
390380
"Epoch 12/25\n",
391-
"60000/60000 [==============================] - 5s 92us/sample - loss: 0.1265 - val_loss: 0.1243\n",
381+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1265 - val_loss: 0.1243\n",
392382
"Epoch 13/25\n",
393-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.1250 - val_loss: 0.1229\n",
383+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1250 - val_loss: 0.1229\n",
394384
"Epoch 14/25\n",
395-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.1238 - val_loss: 0.1218\n",
385+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1238 - val_loss: 0.1218\n",
396386
"Epoch 15/25\n",
397-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1227 - val_loss: 0.1208\n",
387+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1227 - val_loss: 0.1208\n",
398388
"Epoch 16/25\n",
399-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1217 - val_loss: 0.1199\n",
389+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1217 - val_loss: 0.1199\n",
400390
"Epoch 17/25\n",
401-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1209 - val_loss: 0.1192\n",
391+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1209 - val_loss: 0.1192\n",
402392
"Epoch 18/25\n",
403-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1202 - val_loss: 0.1185\n",
393+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1202 - val_loss: 0.1185\n",
404394
"Epoch 19/25\n",
405-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1195 - val_loss: 0.1179\n",
395+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1195 - val_loss: 0.1179\n",
406396
"Epoch 20/25\n",
407-
"60000/60000 [==============================] - 5s 89us/sample - loss: 0.1190 - val_loss: 0.1173\n",
397+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1190 - val_loss: 0.1173\n",
408398
"Epoch 21/25\n",
409399
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1184 - val_loss: 0.1168\n",
410400
"Epoch 22/25\n",
411-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1179 - val_loss: 0.1163\n",
401+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1179 - val_loss: 0.1163\n",
412402
"Epoch 23/25\n",
413-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1175 - val_loss: 0.1159\n",
403+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1175 - val_loss: 0.1159\n",
414404
"Epoch 24/25\n",
415-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1170 - val_loss: 0.1155\n",
405+
"60000/60000 [==============================] - 5s 91us/sample - loss: 0.1170 - val_loss: 0.1155\n",
416406
"Epoch 25/25\n",
417-
"60000/60000 [==============================] - 5s 90us/sample - loss: 0.1166 - val_loss: 0.1152\n"
407+
"60000/60000 [==============================] - 6s 93us/sample - loss: 0.1166 - val_loss: 0.1152\n"
418408
]
419409
},
420410
{

0 commit comments

Comments
 (0)