You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/elasticsearch.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -121,7 +121,6 @@ spring:
121
121
index-name: custom-index
122
122
dimensions: 1536
123
123
similarity: cosine
124
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
125
124
----
126
125
127
126
The Spring Boot properties starting with `spring.elasticsearch.*` are used to configure the Elasticsearch client:
@@ -152,7 +151,6 @@ Properties starting with `spring.ai.vectorstore.elasticsearch.*` are used to con
152
151
|`spring.ai.vectorstore.elasticsearch.index-name` | The name of the index to store the vectors | `spring-ai-document-index`
153
152
|`spring.ai.vectorstore.elasticsearch.dimensions` | The number of dimensions in the vector | `1536`
154
153
|`spring.ai.vectorstore.elasticsearch.similarity` | The similarity function to use | `cosine`
155
-
|`spring.ai.vectorstore.elasticsearch.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/neo4j.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -96,7 +96,6 @@ spring:
96
96
index-name: custom-index
97
97
dimensions: 1536
98
98
distance-type: cosine
99
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
100
99
----
101
100
102
101
The Spring Boot properties starting with `spring.neo4j.*` are used to configure the Neo4j client:
@@ -123,7 +122,6 @@ Properties starting with `spring.ai.vectorstore.neo4j.*` are used to configure t
123
122
|`spring.ai.vectorstore.neo4j.distance-type` | The distance function to use | `cosine`
124
123
|`spring.ai.vectorstore.neo4j.label` | The label used for document nodes | `Document`
125
124
|`spring.ai.vectorstore.neo4j.embedding-property` | The property name used to store embeddings | `embedding`
126
-
|`spring.ai.vectorstore.neo4j.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/opensearch.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -97,7 +97,6 @@ spring:
97
97
index-name: spring-ai-document-index
98
98
initialize-schema: true
99
99
similarity-function: cosinesimil
100
-
batching-strategy: TOKEN_COUNT
101
100
aws: # Only for Amazon OpenSearch Service
102
101
host: <aws opensearch host>
103
102
service-name: <aws service name>
@@ -118,7 +117,6 @@ Properties starting with `spring.ai.vectorstore.opensearch.*` are used to config
118
117
|`spring.ai.vectorstore.opensearch.index-name`| Name of the index to store vectors | `spring-ai-document-index`
119
118
|`spring.ai.vectorstore.opensearch.initialize-schema`| Whether to initialize the required schema | `false`
120
119
|`spring.ai.vectorstore.opensearch.similarity-function`| The similarity function to use | `cosinesimil`
121
-
|`spring.ai.vectorstore.opensearch.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
122
120
|`spring.ai.vectorstore.opensearch.aws.host`| Hostname of the OpenSearch instance | -
123
121
|`spring.ai.vectorstore.opensearch.aws.service-name`| AWS service name | -
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/pgvector.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -100,7 +100,6 @@ spring:
100
100
index-type: HNSW
101
101
distance-type: COSINE_DISTANCE
102
102
dimensions: 1536
103
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
104
103
max-document-batch-size: 10000 # Optional: Maximum number of documents per batch
105
104
----
106
105
@@ -147,7 +146,6 @@ You can use the following properties in your Spring Boot configuration to custom
147
146
|`spring.ai.vectorstore.pgvector.schema-name` | Vector store schema name | `public`
148
147
|`spring.ai.vectorstore.pgvector.table-name` | Vector store table name | `vector_store`
149
148
|`spring.ai.vectorstore.pgvector.schema-validation` | Enables schema and table name validation to ensure they are valid and existing objects. | false
150
-
|`spring.ai.vectorstore.pgvector.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE`. | TOKEN_COUNT
151
149
|`spring.ai.vectorstore.pgvector.max-document-batch-size` | Maximum number of documents to process in a single batch. | 10000
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/qdrant.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -84,7 +84,6 @@ spring:
84
84
collection-name: <collection name>
85
85
use-tls: false
86
86
initialize-schema: true
87
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
88
87
----
89
88
90
89
Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure the `QdrantVectorStore`:
@@ -99,7 +98,6 @@ Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure
99
98
|`spring.ai.vectorstore.qdrant.collection-name`| The name of the collection to use | `vector_store`
100
99
|`spring.ai.vectorstore.qdrant.use-tls`| Whether to use TLS(HTTPS) | `false`
101
100
|`spring.ai.vectorstore.qdrant.initialize-schema`| Whether to initialize the schema | `false`
102
-
|`spring.ai.vectorstore.qdrant.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc
-2Lines changed: 0 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -91,7 +91,6 @@ spring:
91
91
initialize-schema: true
92
92
index-name: custom-index
93
93
prefix: custom-prefix
94
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
95
94
----
96
95
97
96
Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`:
@@ -103,7 +102,6 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t
103
102
|`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false`
104
103
|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index`
105
104
|`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:`
106
-
|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
0 commit comments