Skip to content

Commit ad956e9

Browse files
committed
Update vectordbs doc,batching-strategy is remove
Signed-off-by: Xwh <[email protected]>
1 parent 29002df commit ad956e9

File tree

6 files changed

+0
-12
lines changed

6 files changed

+0
-12
lines changed

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/elasticsearch.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,6 @@ spring:
121121
index-name: custom-index
122122
dimensions: 1536
123123
similarity: cosine
124-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
125124
----
126125

127126
The Spring Boot properties starting with `spring.elasticsearch.*` are used to configure the Elasticsearch client:
@@ -152,7 +151,6 @@ Properties starting with `spring.ai.vectorstore.elasticsearch.*` are used to con
152151
|`spring.ai.vectorstore.elasticsearch.index-name` | The name of the index to store the vectors | `spring-ai-document-index`
153152
|`spring.ai.vectorstore.elasticsearch.dimensions` | The number of dimensions in the vector | `1536`
154153
|`spring.ai.vectorstore.elasticsearch.similarity` | The similarity function to use | `cosine`
155-
|`spring.ai.vectorstore.elasticsearch.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
156154
|===
157155

158156
The following similarity functions are available:

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/neo4j.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,6 @@ spring:
9696
index-name: custom-index
9797
dimensions: 1536
9898
distance-type: cosine
99-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
10099
----
101100

102101
The Spring Boot properties starting with `spring.neo4j.*` are used to configure the Neo4j client:
@@ -123,7 +122,6 @@ Properties starting with `spring.ai.vectorstore.neo4j.*` are used to configure t
123122
|`spring.ai.vectorstore.neo4j.distance-type` | The distance function to use | `cosine`
124123
|`spring.ai.vectorstore.neo4j.label` | The label used for document nodes | `Document`
125124
|`spring.ai.vectorstore.neo4j.embedding-property` | The property name used to store embeddings | `embedding`
126-
|`spring.ai.vectorstore.neo4j.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
127125
|===
128126

129127
The following distance functions are available:

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/opensearch.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,6 @@ spring:
9797
index-name: spring-ai-document-index
9898
initialize-schema: true
9999
similarity-function: cosinesimil
100-
batching-strategy: TOKEN_COUNT
101100
aws: # Only for Amazon OpenSearch Service
102101
host: <aws opensearch host>
103102
service-name: <aws service name>
@@ -118,7 +117,6 @@ Properties starting with `spring.ai.vectorstore.opensearch.*` are used to config
118117
|`spring.ai.vectorstore.opensearch.index-name`| Name of the index to store vectors | `spring-ai-document-index`
119118
|`spring.ai.vectorstore.opensearch.initialize-schema`| Whether to initialize the required schema | `false`
120119
|`spring.ai.vectorstore.opensearch.similarity-function`| The similarity function to use | `cosinesimil`
121-
|`spring.ai.vectorstore.opensearch.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
122120
|`spring.ai.vectorstore.opensearch.aws.host`| Hostname of the OpenSearch instance | -
123121
|`spring.ai.vectorstore.opensearch.aws.service-name`| AWS service name | -
124122
|`spring.ai.vectorstore.opensearch.aws.access-key`| AWS access key | -

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/pgvector.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,6 @@ spring:
100100
index-type: HNSW
101101
distance-type: COSINE_DISTANCE
102102
dimensions: 1536
103-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
104103
max-document-batch-size: 10000 # Optional: Maximum number of documents per batch
105104
----
106105

@@ -147,7 +146,6 @@ You can use the following properties in your Spring Boot configuration to custom
147146
|`spring.ai.vectorstore.pgvector.schema-name` | Vector store schema name | `public`
148147
|`spring.ai.vectorstore.pgvector.table-name` | Vector store table name | `vector_store`
149148
|`spring.ai.vectorstore.pgvector.schema-validation` | Enables schema and table name validation to ensure they are valid and existing objects. | false
150-
|`spring.ai.vectorstore.pgvector.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE`. | TOKEN_COUNT
151149
|`spring.ai.vectorstore.pgvector.max-document-batch-size` | Maximum number of documents to process in a single batch. | 10000
152150

153151
|===

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/qdrant.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,6 @@ spring:
8484
collection-name: <collection name>
8585
use-tls: false
8686
initialize-schema: true
87-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
8887
----
8988

9089
Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure the `QdrantVectorStore`:
@@ -99,7 +98,6 @@ Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure
9998
|`spring.ai.vectorstore.qdrant.collection-name`| The name of the collection to use | `vector_store`
10099
|`spring.ai.vectorstore.qdrant.use-tls`| Whether to use TLS(HTTPS) | `false`
101100
|`spring.ai.vectorstore.qdrant.initialize-schema`| Whether to initialize the schema | `false`
102-
|`spring.ai.vectorstore.qdrant.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
103101
|===
104102

105103
== Manual Configuration

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,6 @@ spring:
9191
initialize-schema: true
9292
index-name: custom-index
9393
prefix: custom-prefix
94-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
9594
----
9695

9796
Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`:
@@ -103,7 +102,6 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t
103102
|`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false`
104103
|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index`
105104
|`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:`
106-
|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
107105
|===
108106

109107
== Metadata Filtering

0 commit comments

Comments
 (0)