diff --git a/spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc b/spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc index a7bc657a9bb..0d098f15d40 100644 --- a/spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc +++ b/spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc @@ -89,9 +89,8 @@ spring: vectorstore: redis: initialize-schema: true - index-name: custom-index + index: custom-index prefix: custom-prefix - batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding ---- Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`: @@ -101,9 +100,8 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t |Property | Description | Default Value |`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false` -|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index` +|`spring.ai.vectorstore.redis.index` | The name of the index to store the vectors | `spring-ai-index` |`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:` -|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT` |=== == Metadata Filtering