|
| 1 | +# Train PyTorch Models using ElasticDL on Personal Computer |
| 2 | + |
| 3 | +This document shows how to run an ElasticDL AllReduce job to train a PyTorch |
| 4 | +model using MNIST dataset on Minikube. |
| 5 | + |
| 6 | +## Prerequisites |
| 7 | + |
| 8 | +1. Install Minikube, preferably >= v1.11.0, following the installation |
| 9 | + [guide](https://kubernetes.io/docs/tasks/tools/install-minikube). Minikube |
| 10 | + runs a single-node Kubernetes cluster in a virtual machine on your personal |
| 11 | + computer. |
| 12 | + |
| 13 | +1. Install Docker CE, preferably >= 18.x, following the |
| 14 | + [guide](https://docs.docker.com/docker-for-mac/install/) for building Docker |
| 15 | + images containing user-defined models and the ElasticDL framework. |
| 16 | + |
| 17 | +1. Install Python, preferably >= 3.6, because the ElasticDL command-line tool is |
| 18 | + in Python. |
| 19 | + |
| 20 | +## Models |
| 21 | + |
| 22 | +In this tutorial, we use the model defined in the [model |
| 23 | +zoo](https://github.com/sql-machine-learning/elasticdl/tree/develop/model_zoo/mnist/mnist_pytorch.py) |
| 24 | +directory. This model is defined using PyTorch API. |
| 25 | + |
| 26 | +## Datasets |
| 27 | + |
| 28 | +We use the [MINST](https://www.kaggle.com/jidhumohan/mnist-png/download) |
| 29 | +dataset in this tutorial. After downloading the dataset, we should |
| 30 | +unzip it into a local directory. |
| 31 | + |
| 32 | +## The Kubernetes Cluster |
| 33 | + |
| 34 | +The following command starts a Kubernetes cluster locally using Minikube. It |
| 35 | +uses [VirtualBox](https://www.virtualbox.org/), a hypervisor coming with |
| 36 | +macOS, to create the virtual machine cluster. |
| 37 | + |
| 38 | +```bash |
| 39 | +minikube start --vm-driver=virtualbox \ |
| 40 | + --cpus 2 --memory 6144 --disk-size=50gb |
| 41 | +eval $(minikube docker-env) |
| 42 | +``` |
| 43 | + |
| 44 | +The command `minikube docker-env` returns a set of Bash environment variable |
| 45 | +to configure your local environment to re-use the Docker daemon inside |
| 46 | +the Minikube instance. |
| 47 | + |
| 48 | +The following command is necessary to enable |
| 49 | +[RBAC](https://kubernetes.io/docs/reference/access-authn-authz/rbac/) of |
| 50 | +Kubernetes. |
| 51 | + |
| 52 | +```bash |
| 53 | +kubectl apply -f \ |
| 54 | + https://raw.githubusercontent.com/sql-machine-learning/elasticdl/develop/elasticdl/manifests/elasticdl-rbac.yaml |
| 55 | +``` |
| 56 | + |
| 57 | +If you happen to live in a region where `raw.githubusercontent.com` is banned, |
| 58 | +you might want to Git clone the above repository to get the YAML file. |
| 59 | + |
| 60 | +## Install ElasticDL Client Tool |
| 61 | + |
| 62 | +The following command installs the command line tool `elasticdl`, which talks to |
| 63 | +the Kubernetes cluster and operates ElasticDL jobs. |
| 64 | + |
| 65 | +```bash |
| 66 | +pip install elasticdl_client |
| 67 | +``` |
| 68 | + |
| 69 | +## Build the Docker Image with Model Definition |
| 70 | + |
| 71 | +Kubernetes runs Docker containers, so we need to put user-defined models, |
| 72 | +the ElasticDL api package and all dependencies into a Docker image. |
| 73 | + |
| 74 | +In this tutorial, we use a predefined model in the ElasticDL repository. To |
| 75 | +retrieve the source code, please run the following command. |
| 76 | + |
| 77 | +```bash |
| 78 | +git clone https://github.com/sql-machine-learning/elasticdl |
| 79 | +``` |
| 80 | + |
| 81 | +The model definition is in directory [elasticdl/model_zoo/mnist/mnist_pytorch.py](https://github.com/sql-machine-learning/elasticdl/blob/develop/model_zoo/mnist/mnist_pytorch.py). |
| 82 | + |
| 83 | +We build the image based on `horovod/horovod:0.20.0-tf2.3.0-torch1.6.0-mxnet1.5.0-py3.7-cpu` |
| 84 | +and the dockerfile is |
| 85 | + |
| 86 | +```text |
| 87 | +FROM horovod/horovod:0.20.0-tf2.3.0-torch1.6.0-mxnet1.5.0-py3.7-cpu as base |
| 88 | +
|
| 89 | +RUN pip install opencv-python |
| 90 | +RUN apt update |
| 91 | +RUN apt install -y libgl1-mesa-glx libglib2.0-dev |
| 92 | +
|
| 93 | +RUN HOROVOD_WITHOUT_MPI=1 \ |
| 94 | + HOROVOD_WITH_GLOO=1 \ |
| 95 | + HOROVOD_WITHOUT_MXNET=1 \ |
| 96 | + HOROVOD_WITH_TENSORFLOW=1 \ |
| 97 | + HOROVOD_WITH_PYTORCH=1 \ |
| 98 | + pip install horovod==0.21.0 |
| 99 | +
|
| 100 | +RUN pip install elasticdl_api |
| 101 | +
|
| 102 | +COPY ./model_zoo model_zoo |
| 103 | +ENV PYTHONUNBUFFERED 0 |
| 104 | +``` |
| 105 | + |
| 106 | +Then, we use docker to build the image |
| 107 | + |
| 108 | +```bash |
| 109 | +docker build -t elasticdl:mnist_pytorch -f ${mnist_dockerfile} . |
| 110 | +``` |
| 111 | + |
| 112 | +## Submit the Training Job |
| 113 | + |
| 114 | +The following command submits a training job: |
| 115 | + |
| 116 | +```bash |
| 117 | +elasticdl train \ |
| 118 | + --image_name=elasticdl/elasticdl:v1.0.0 \ |
| 119 | + --worker_image=elasticdl:mnsit_pytorch \ |
| 120 | + --job_command="python -m model_zoo.mnist.mnist_pytorch --batch_size 64 --num_epochs 1 --training_data=/data/mnist_png/training --validation_data=/data/mnist_png/testing" \ |
| 121 | + --num_minibatches_per_task=2 \ |
| 122 | + --num_workers=2 \ |
| 123 | + --master_resource_request="cpu=0.2,memory=1024Mi" \ |
| 124 | + --master_resource_limit="cpu=1,memory=2048Mi" \ |
| 125 | + --worker_resource_request="cpu=0.3,memory=1024Mi" \ |
| 126 | + --worker_resource_limit="cpu=1,memory=2048Mi" \ |
| 127 | + --envs="USE_TORCH=true,HOROVOD_GLOO_TIMEOUT_SECONDS=60,PYTHONUNBUFFERED=true" \ |
| 128 | + --job_name=test-mnist-allreduce \ |
| 129 | + --image_pull_policy=Never \ |
| 130 | + --volume="host_path={mnist_data_dir},mount_path=/data" \ |
| 131 | + --distribution_strategy=AllreduceStrategy |
| 132 | +``` |
| 133 | + |
| 134 | +`--image_name` is the image to launch the ElasticDL master which |
| 135 | +has nothing to do with the estimator model. The ElasticDL master is |
| 136 | +responsible for launching pod and assigning data shards to workers with |
| 137 | +elasticity and fault-tolerance. |
| 138 | + |
| 139 | +`{mnist_data_dir}` is the absolute path of the `./data` with the directory of |
| 140 | +`mnist_png`. Here, the option `--volume="host_path={mnist_data_dir},mount_path=/data"` |
| 141 | +bind mount it into the containers/pods. |
| 142 | + |
| 143 | +The option `--num_workers=2` tells the master to start 2 worker pods. |
| 144 | + |
| 145 | +### Check Job Status |
| 146 | + |
| 147 | +After the job submission, we can run the command `kubectl get pods` to list |
| 148 | +related containers. |
| 149 | + |
| 150 | +```bash |
| 151 | +NAME READY STATUS RESTARTS AGE |
| 152 | +elasticdl-test-mnist-allreduce-master 1/1 Running 0 7s |
| 153 | +test-mnist-allreduce-edljob-worker-0 1/1 Running 0 5s |
| 154 | +test-mnist-allreduce-edljob-worker-1 1/1 Running 0 5s |
| 155 | +``` |
| 156 | + |
| 157 | +## Train an PyTorch Model Using ElasticDL with Your Dataset |
| 158 | + |
| 159 | +In order to support fault-tolerance and elasticity with ElasticDL, you only |
| 160 | +need to create a custom dataset and wrap the function to perform forward and |
| 161 | +backward computation using ElasticDL APIs. |
| 162 | + |
| 163 | +### Create a Dataset With the RecordIndexService of ElasticDL |
| 164 | + |
| 165 | +ElasticDL can split the total dataset into shards and assign those |
| 166 | +shards to workers. If some workers fail, ElasticDL can re-assign |
| 167 | +shards of failed workers to other running workers. We can get sample |
| 168 | +indices in those shards by `RecordIndexService`. We can create a |
| 169 | +dataset to read images by indices from the `RecordIndexService`. |
| 170 | + |
| 171 | +```python |
| 172 | +class ElasticDataset(Dataset): |
| 173 | + def __init__(self, images, data_shard_service=None): |
| 174 | + """The dataset supports elastic training. |
| 175 | +
|
| 176 | + Args: |
| 177 | + images: A list with tuples like (image_path, label_index). |
| 178 | + For example, we can use `torchvision.datasets.ImageFolder` |
| 179 | + to get the list. |
| 180 | + data_shard_service: If we want to use elastic training, we |
| 181 | + need to use the `data_shard_service` of the elastic controller |
| 182 | + in elasticai_api. |
| 183 | + """ |
| 184 | + self.data_shard_service = data_shard_service |
| 185 | + self._images = images |
| 186 | + |
| 187 | + def __len__(self): |
| 188 | + if self.data_shard_service: |
| 189 | + # Set the maxsize because the size of dataset is not fixed |
| 190 | + # when using dynamic sharding |
| 191 | + return sys.maxsize |
| 192 | + else: |
| 193 | + return len(self._images) |
| 194 | + |
| 195 | + def __getitem__(self, index): |
| 196 | + if self.data_shard_service: |
| 197 | + index = self.data_shard_service.fetch_record_index() |
| 198 | + return self.read_image(index) |
| 199 | + else: |
| 200 | + return self.read_image(index) |
| 201 | + |
| 202 | + def read_image(self, index): |
| 203 | + image_path, label = self._images[index] |
| 204 | + image = cv2.imread(image_path) |
| 205 | + image = np.array(image / 255.0, np.float32) |
| 206 | + image = image.reshape(3, 28, 28) |
| 207 | + return image, label |
| 208 | + |
| 209 | + |
| 210 | +if __name__ == "__main__": |
| 211 | + ... |
| 212 | + data_shard_service = RecordIndexService( |
| 213 | + batch_size=args.batch_size, |
| 214 | + dataset_size=len(train_data.imgs), |
| 215 | + num_epochs=args.num_epochs, |
| 216 | + shuffle=True, |
| 217 | + dataset_name="mnist_training_data", |
| 218 | + ) |
| 219 | + train_dataset = ElasticDataset(train_data.imgs, data_shard_service) |
| 220 | + ... |
| 221 | +``` |
| 222 | + |
| 223 | +### Create an ElasticDL Controller to Wrap the Forward and Backward Computation |
| 224 | + |
| 225 | +In ElasticDL AllReduce, we need to create a `PyTorchAllReduceController` |
| 226 | +of ElasticDL. At the begining, The controller can broadcast the model and |
| 227 | +optimizer. If some workers fail, the controller will re-initialize Horovod |
| 228 | +using a new world. After creating the controller, we should wrap the function |
| 229 | +to perform the forward and backward computation by `elastic_run`. |
| 230 | + |
| 231 | +```python |
| 232 | +def train_one_batch(model, optimizer, data, target): |
| 233 | + optimizer.zero_grad() |
| 234 | + output = model(data) |
| 235 | + loss = F.nll_loss(output, target) |
| 236 | + loss.backward() |
| 237 | + optimizer.step() |
| 238 | + return loss |
| 239 | + |
| 240 | + |
| 241 | +if __name__ == "__main__": |
| 242 | + ... |
| 243 | + model = ... |
| 244 | + optimizer = ... |
| 245 | + allreduce_controller = PyTorchAllReduceController(data_shard_service) |
| 246 | + allreduce_controller.set_broadcast_model(model) |
| 247 | + allreduce_controller.set_broadcast_optimizer(optimizer) |
| 248 | + # Use the elastic function to wrap the training function with a batch. |
| 249 | + elastic_train_one_batch = allreduce_controller.elastic_run(train_one_batch) |
| 250 | + |
| 251 | + with allreduce_controller.scope(): |
| 252 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 253 | + loss = elastic_train_one_batch(model, optimizer, data, target) |
| 254 | + ... |
| 255 | +``` |
0 commit comments