|
| 1 | +# Copyright 2021 The ElasticDL Authors. All rights reserved. |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# |
| 6 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +# |
| 8 | +# Unless required by applicable law or agreed to in writing, software |
| 9 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | +# See the License for the specific language governing permissions and |
| 12 | +# limitations under the License. |
| 13 | + |
| 14 | +import csv |
| 15 | +import os |
| 16 | + |
| 17 | +import tensorflow as tf |
| 18 | + |
| 19 | +from elasticai_api.common.data_shard_service import build_data_shard_service |
| 20 | +from elasticai_api.tensorflow.hooks import ElasticDataShardReportHook |
| 21 | + |
| 22 | +tf.logging.set_verbosity(tf.logging.INFO) |
| 23 | + |
| 24 | +CATEGORY_CODE = {"Iris-setosa": 0, "Iris-versicolor": 1, "Iris-virginica": 2} |
| 25 | +DATASET_DIR = "/data/iris.data" |
| 26 | + |
| 27 | + |
| 28 | +def read_csv(file_path): |
| 29 | + rows = [] |
| 30 | + with open(file_path) as csvfile: |
| 31 | + csv_reader = csv.reader(csvfile) |
| 32 | + for row in csv_reader: |
| 33 | + rows.append(row) |
| 34 | + return rows |
| 35 | + |
| 36 | + |
| 37 | +def model_fn(features, labels, mode, params): |
| 38 | + net = tf.feature_column.input_layer(features, params["feature_columns"]) |
| 39 | + |
| 40 | + for units in params["hidden_units"]: |
| 41 | + net = tf.layers.dense(net, units=units, activation=tf.nn.relu) |
| 42 | + logits = tf.layers.dense(net, params["n_classes"], activation=None) |
| 43 | + |
| 44 | + predicted_classes = tf.argmax(logits, 1) |
| 45 | + if mode == tf.estimator.ModeKeys.PREDICT: |
| 46 | + predictions = { |
| 47 | + "classes": predicted_classes[:, tf.newaxis], |
| 48 | + "probs": tf.nn.softmax(logits), |
| 49 | + "logits": logits, |
| 50 | + } |
| 51 | + export_outputs = { |
| 52 | + "prediction": tf.estimator.export.PredictOutput(predictions) |
| 53 | + } |
| 54 | + return tf.estimator.EstimatorSpec( |
| 55 | + mode, predictions=predictions, export_outputs=export_outputs |
| 56 | + ) |
| 57 | + |
| 58 | + loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) |
| 59 | + if mode == tf.estimator.ModeKeys.TRAIN: |
| 60 | + optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) |
| 61 | + train_op = optimizer.minimize( |
| 62 | + loss, global_step=tf.train.get_global_step() |
| 63 | + ) |
| 64 | + logging_hook = tf.train.LoggingTensorHook( |
| 65 | + {"loss": loss}, every_n_iter=10 |
| 66 | + ) |
| 67 | + return tf.estimator.EstimatorSpec( |
| 68 | + mode, loss=loss, train_op=train_op, training_hooks=[logging_hook] |
| 69 | + ) |
| 70 | + |
| 71 | + accuracy = tf.metrics.accuracy( |
| 72 | + labels=labels, predictions=predicted_classes, name="acc" |
| 73 | + ) |
| 74 | + metrics = {"accuracy": accuracy} |
| 75 | + if mode == tf.estimator.ModeKeys.EVAL: |
| 76 | + return tf.estimator.EstimatorSpec( |
| 77 | + mode, loss=loss, eval_metric_ops=metrics |
| 78 | + ) |
| 79 | + |
| 80 | + |
| 81 | +def train_generator(shard_service): |
| 82 | + rows = read_csv(DATASET_DIR) |
| 83 | + while True: |
| 84 | + # Read samples by the range of the shard from |
| 85 | + # the data shard serice. |
| 86 | + shard = shard_service.fetch_shard() |
| 87 | + if not shard: |
| 88 | + break |
| 89 | + for i in range(shard.start, shard.end): |
| 90 | + label = CATEGORY_CODE[rows[i][-1]] |
| 91 | + yield rows[i][0:-1], [label] |
| 92 | + |
| 93 | + |
| 94 | +def eval_generator(): |
| 95 | + rows = read_csv(DATASET_DIR) |
| 96 | + for row in rows: |
| 97 | + label = CATEGORY_CODE[row[-1]] |
| 98 | + yield row[0:-1], [label] |
| 99 | + |
| 100 | + |
| 101 | +def input_fn(sample_generator, batch_size): |
| 102 | + dataset = tf.data.Dataset.from_generator( |
| 103 | + sample_generator, |
| 104 | + output_types=(tf.float32, tf.int32), |
| 105 | + output_shapes=(4, 1), |
| 106 | + ) |
| 107 | + dataset = dataset.shuffle(100).batch(batch_size) |
| 108 | + feature_values, label_values = dataset.make_one_shot_iterator().get_next() |
| 109 | + features = {"x": feature_values} |
| 110 | + return features, label_values |
| 111 | + |
| 112 | + |
| 113 | +if __name__ == "__main__": |
| 114 | + model_dir = "/data/ckpts/" |
| 115 | + batch_size = 64 |
| 116 | + feature_columns = [ |
| 117 | + tf.feature_column.numeric_column(key="x", shape=(4,), dtype=tf.float32) |
| 118 | + ] |
| 119 | + os.makedirs(model_dir, exist_ok=True) |
| 120 | + |
| 121 | + config = tf.estimator.RunConfig( |
| 122 | + model_dir=model_dir, save_checkpoints_steps=300, keep_checkpoint_max=5 |
| 123 | + ) |
| 124 | + classifier = tf.estimator.Estimator( |
| 125 | + model_fn=model_fn, |
| 126 | + config=config, |
| 127 | + params={ |
| 128 | + "hidden_units": [8, 4], |
| 129 | + "n_classes": 3, |
| 130 | + "feature_columns": feature_columns, |
| 131 | + }, |
| 132 | + ) |
| 133 | + |
| 134 | + # Create a data shard service which can split the dataset |
| 135 | + # into shards. |
| 136 | + rows = read_csv(DATASET_DIR) |
| 137 | + training_data_shard_svc = build_data_shard_service( |
| 138 | + batch_size=batch_size, |
| 139 | + num_epochs=100, |
| 140 | + dataset_size=len(rows), |
| 141 | + num_minibatches_per_shard=1, |
| 142 | + dataset_name="iris_training_data", |
| 143 | + ) |
| 144 | + |
| 145 | + # Add a hook to report the shard done so that the data |
| 146 | + # shard service will not reassign the shard to other workers. |
| 147 | + hooks = [ElasticDataShardReportHook(training_data_shard_svc)] |
| 148 | + |
| 149 | + def train_input_fn(): |
| 150 | + return input_fn( |
| 151 | + lambda: train_generator(training_data_shard_svc), batch_size |
| 152 | + ) |
| 153 | + |
| 154 | + train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, hooks=hooks,) |
| 155 | + eval_spec = tf.estimator.EvalSpec( |
| 156 | + input_fn=lambda: input_fn(eval_generator, batch_size) |
| 157 | + ) |
| 158 | + tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec) |
0 commit comments