@@ -32,25 +32,38 @@ this command-line client tool.
32
32
33
33
```bash
34
34
cd ${model_root_path}
35
- elasticdl zoo init [base_image_name]
35
+ elasticdl zoo init
36
+ [--base_image=customized_base_image_name]
37
+ [--cluster_spec=prem_cluster_spec]
38
+ [--extra_pypi_index=your_pypi_index]
36
39
```
37
40
38
- `base_image_name` is optional and the default value is `python`.
41
+ The options inside `[]` are optional. The default value of `base_image`
42
+ is `python:3.6`.
39
43
The generated Dockerfile example is:
40
44
41
45
```Dockerfile
42
- FROM python
46
+ FROM python:3.6
47
+
48
+ RUN pip install elasticdl_preprocessing
49
+ RUN pip install elasticdl
50
+
43
51
COPY . /model_zoo
44
52
RUN pip install -r /model_zoo/requirements.txt
45
- RUN pip install elasticdl
53
+ ...
46
54
```
47
55
48
56
Users can make additional updates on the Dockerfile if necessary.
49
57
50
58
1. Build the Docker image for an ElasticDL job.
51
59
52
60
```bash
53
- elasticdl zoo build --image=a_docker_registry/bright/elasticdl-wnd:1.0 .
61
+ elasticdl zoo build
62
+ --image=a_docker_registry/bright/elasticdl-wnd:1.0
63
+ [--docker_base_url=docke_base_url]
64
+ [--docker_tlscert=docker_tlscert]
65
+ [--docker_tlskey=docker_tlskey]
66
+ .
54
67
```
55
68
56
69
1. Push the Docker image to a remote registry.
@@ -59,11 +72,15 @@ this command-line client tool.
59
72
elasticdl zoo push a_docker_registry/bright/elasticdl-wnd:1.0
60
73
```
61
74
75
+ If you want to execute the job locally in Minikube, the `push` step
76
+ is not necessary.
77
+
62
78
1. Submit a model training/prediction/evaluation job.
63
79
64
80
```bash
65
81
elasticdl train \
66
82
--image=a_docker_registry/bright/elasticdl-wnd:1.0 \
83
+ --model_zoo=model_zoo
67
84
--model_def=a_directory.wide_and_deep.custom_model \
68
85
--training_data=/data/mnist/train \
69
86
--validation_data=/data/mnist/test \
0 commit comments