|
| 1 | +# Train TensorFlow Estimator Models using ElasticDL on Personal Computer |
| 2 | + |
| 3 | +This document shows how to run an ElasticDL job to train a tf.estimator |
| 4 | +model using iris dataset on Minikube. |
| 5 | + |
| 6 | +## Prerequisites |
| 7 | + |
| 8 | +1. Install Minikube, preferably >= v1.11.0, following the installation |
| 9 | + [guide](https://kubernetes.io/docs/tasks/tools/install-minikube). Minikube |
| 10 | + runs a single-node Kubernetes cluster in a virtual machine on your personal |
| 11 | + computer. |
| 12 | + |
| 13 | +1. Install Docker CE, preferably >= 18.x, following the |
| 14 | + [guide](https://docs.docker.com/docker-for-mac/install/) for building Docker |
| 15 | + images containing user-defined models and the ElasticDL framework. |
| 16 | + |
| 17 | +1. Install Python, preferably >= 3.6, because the ElasticDL command-line tool is |
| 18 | + in Python. |
| 19 | + |
| 20 | +## Models |
| 21 | + |
| 22 | +Among all machine learning toolkits that ElasticDL can work with, TensorFlow is |
| 23 | +the most tested and used. In this tutorial, we use a model from the [model |
| 24 | +zoo](https://github.com/sql-machine-learning/elasticdl/tree/develop/model_zoo) |
| 25 | +directory. This model is defined using TensorFlow estimator API. |
| 26 | + |
| 27 | +## Datasets |
| 28 | + |
| 29 | +We use the [iris](https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data) |
| 30 | +dataset in this tutorial. |
| 31 | + |
| 32 | +```bash |
| 33 | +mkdir ./data |
| 34 | +wget https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data -O ./data/iris.data |
| 35 | +``` |
| 36 | + |
| 37 | +## The Kubernetes Cluster |
| 38 | + |
| 39 | +The following command starts a Kubernetes cluster locally using Minikube. It |
| 40 | +uses [VirtualBox](https://www.virtualbox.org/), a hypervisor coming with |
| 41 | +macOS, to create the virtual machine cluster. |
| 42 | + |
| 43 | +```bash |
| 44 | +minikube start --vm-driver=virtualbox \ |
| 45 | + --cpus 2 --memory 6144 --disk-size=50gb |
| 46 | +eval $(minikube docker-env) |
| 47 | +``` |
| 48 | + |
| 49 | +The command `minikube docker-env` returns a set of Bash environment variable |
| 50 | +to configure your local environment to re-use the Docker daemon inside |
| 51 | +the Minikube instance. |
| 52 | + |
| 53 | +The following command is necessary to enable |
| 54 | +[RBAC](https://kubernetes.io/docs/reference/access-authn-authz/rbac/) of |
| 55 | +Kubernetes. |
| 56 | + |
| 57 | +```bash |
| 58 | +kubectl apply -f \ |
| 59 | + https://raw.githubusercontent.com/sql-machine-learning/elasticdl/develop/elasticdl/manifests/elasticdl-rbac.yaml |
| 60 | +``` |
| 61 | + |
| 62 | +If you happen to live in a region where `raw.githubusercontent.com` is banned, |
| 63 | +you might want to Git clone the above repository to get the YAML file. |
| 64 | + |
| 65 | +## Install ElasticDL Client Tool |
| 66 | + |
| 67 | +The following command installs the command line tool `elasticdl`, which talks to |
| 68 | +the Kubernetes cluster and operates ElasticDL jobs. |
| 69 | + |
| 70 | +```bash |
| 71 | +pip install elasticdl_client |
| 72 | +``` |
| 73 | + |
| 74 | +## Build the Docker Image with Model Definition |
| 75 | + |
| 76 | +Kubernetes runs Docker containers, so we need to put user-defined models, |
| 77 | +the ElasticDL api package and all dependencies into a Docker image. |
| 78 | + |
| 79 | +In this tutorial, we use a predefined model in the ElasticDL repository. To |
| 80 | +retrieve the source code, please run the following command. |
| 81 | + |
| 82 | +```bash |
| 83 | +git clone https://github.com/sql-machine-learning/elasticdl |
| 84 | +``` |
| 85 | + |
| 86 | +The estimator model definition is in directory [elasticdl/model_zoo/iris](https://github.com/sql-machine-learning/elasticdl/tree/develop/model_zoo/iris). |
| 87 | + |
| 88 | +We build the image based on tensorflow:1.13.2 and the dockerfile is |
| 89 | + |
| 90 | +```text |
| 91 | +FROM tensorflow/tensorflow:1.13.2-py3 as base |
| 92 | +
|
| 93 | +RUN pip install elasticdl_api |
| 94 | +
|
| 95 | +COPY ./model_zoo model_zoo |
| 96 | +``` |
| 97 | + |
| 98 | +Then, we use docker to build the image |
| 99 | + |
| 100 | +```bash |
| 101 | +docker build -t elasticdl:iris_estimator -f ${iris_dockerfile} . |
| 102 | +``` |
| 103 | + |
| 104 | +## Submit the Training Job |
| 105 | + |
| 106 | +The following command submits a training job: |
| 107 | + |
| 108 | +```bash |
| 109 | +elasticdl train \ |
| 110 | + --image_name=elasticdl:1.0.0 \ |
| 111 | + --worker_image=elasticdl:iris_estimator \ |
| 112 | + --ps_image=elasticdl:iris_estimator \ |
| 113 | + --job_command="python -m model_zoo.iris.dnn_estimator" \ |
| 114 | + --master_resource_request="cpu=0.2,memory=1024Mi" \ |
| 115 | + --master_resource_limit="cpu=1,memory=2048Mi" \ |
| 116 | + --num_ps=1 \ |
| 117 | + --ps_resource_request="cpu=0.2,memory=1024Mi" \ |
| 118 | + --ps_resource_limit="cpu=1,memory=2048Mi" \ |
| 119 | + --num_workers=1 \ |
| 120 | + --worker_resource_request="cpu=0.3,memory=1024Mi" \ |
| 121 | + --worker_resource_limit="cpu=1,memory=2048Mi" \ |
| 122 | + --chief_resource_request="cpu=0.3,memory=1024Mi" \ |
| 123 | + --chief_resource_limit="cpu=1,memory=2048Mi" \ |
| 124 | + --num_evaluator=1 \ |
| 125 | + --evaluator_resource_request="cpu=0.3,memory=1024Mi" \ |
| 126 | + --evaluator_resource_limit="cpu=1,memory=2048Mi" \ |
| 127 | + --job_name=test-iris-estimator \ |
| 128 | + --image_pull_policy=Never \ |
| 129 | + --distribution_strategy=ParameterServerStrategy \ |
| 130 | + --need_tf_config=true \ |
| 131 | + --volume="host_path={iris_data_dir},mount_path=/data" \ |
| 132 | +``` |
| 133 | + |
| 134 | +`--image_name` is the image to launch the ElasticDL master which |
| 135 | +has nothing to do with the estimator model. The ElasticDL master is |
| 136 | +responsible for launching pod and assigning data shards to workers with |
| 137 | +elasticity and fault-tolerance. |
| 138 | + |
| 139 | +`{iris_data_dir}` is the absolute path of the `./data` with `iris.data`. |
| 140 | +Here, the option `--volume="host_path={iris_data_dir},mount_path=/data"` |
| 141 | +bind mount it into the containers/pods. |
| 142 | + |
| 143 | +The option `--num_workers=1` tells the master to start a worker pod. |
| 144 | +The option `--num_ps=1` tells the master to start a ps pod. |
| 145 | +The option `--num_evaluator` tells the master to start an evaluator pod. |
| 146 | + |
| 147 | +And the master will start a chief worker for a TensorFlow estiamtor model by default. |
| 148 | + |
| 149 | +### Check Job Status |
| 150 | + |
| 151 | +After the job submission, we can run the command `kubectl get pods` to list |
| 152 | +related containers. |
| 153 | + |
| 154 | +```bash |
| 155 | +NAME READY STATUS RESTARTS AGE |
| 156 | +elasticdl-test-iris-estimator-master 1/1 Running 0 9s |
| 157 | +test-iris-estimator-edljob-chief-0 1/1 Running 0 6s |
| 158 | +test-iris-estimator-edljob-evaluator-0 0/1 Pending 0 6s |
| 159 | +test-iris-estimator-edljob-ps-0 1/1 Running 0 7s |
| 160 | +test-iris-estimator-edljob-worker-0 1/1 Running 0 6s |
| 161 | +``` |
| 162 | + |
| 163 | +## Train an Estimator Model Using ElasticDL with Your Dataset |
| 164 | + |
| 165 | +You only need to modify your `input_fn` with ElasticDL DataShardService. |
| 166 | +The DataShardService will split the sample indices into ranges and assign |
| 167 | +those ranges to workers. The worker only need to read samples by indices |
| 168 | +in those ranges. |
| 169 | + |
| 170 | +1. Create a DataShardService. |
| 171 | + |
| 172 | +```python |
| 173 | +from elasticai_api.common.data_shard_service import build_data_shard_service |
| 174 | + |
| 175 | +training_data_shard_svc = build_data_shard_service( |
| 176 | + batch_size=batch_size, |
| 177 | + num_epochs=100, |
| 178 | + dataset_size=len(rows), |
| 179 | + num_minibatches_per_shard=1, |
| 180 | + dataset_name="iris_training_data", |
| 181 | + ) |
| 182 | +``` |
| 183 | + |
| 184 | +- batch_size: Batch size of each step. |
| 185 | +- num_epochs: The number of epochs. |
| 186 | +- dataset_size: The total number of samples in the dataset. |
| 187 | +- num_minibatches_per_shard: The number of batches in each shard. |
| 188 | + The number of samples in each shard is |
| 189 | + `batch_size * num_minibatches_per_shard` |
| 190 | +- dataset_name: The name of dataset. |
| 191 | + |
| 192 | +2. Create a generator by reading samples with shards. |
| 193 | + |
| 194 | +The `shard.start` and `shard.end` is the start index |
| 195 | +and end index of samples in those shard. You can read |
| 196 | +samples by the two indices like: |
| 197 | + |
| 198 | +```python |
| 199 | +def train_generator(shard_service): |
| 200 | + while True: |
| 201 | + # Read samples by the range of the shard from |
| 202 | + # the data shard serice. |
| 203 | + shard = shard_service.fetch_shard() |
| 204 | + if not shard: |
| 205 | + break |
| 206 | + for i in range(shard.start, shard.end): |
| 207 | + label = CATEGORY_CODE[rows[i][-1]] |
| 208 | + yield rows[i][0:-1], [label] |
| 209 | +``` |
| 210 | + |
| 211 | +3. Create a session hook to report shard |
| 212 | + |
| 213 | +```python |
| 214 | +from elasticai_api.tensorflow.hooks import ElasticDataShardReportHook |
| 215 | + |
| 216 | +hooks = [ |
| 217 | + ElasticDataShardReportHook(training_data_shard_svc), |
| 218 | +] |
| 219 | +train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, hooks=hooks) |
| 220 | +``` |
| 221 | + |
| 222 | +After 3 steps, you can train your estimator models using ElasticDL |
| 223 | +in data parallel mode. |
0 commit comments