Useful resources #3
srinathdama
started this conversation in
Ideas
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
1. Cluster GAN
Paper: https://arxiv.org/pdf/1809.03627.pdf
code (authors, Tensorflow): https://github.com/sudiptodip15/ClusterGAN
code (PyTorch): https://github.com/zhampel/clusterGAN
issues
MNIST Dataset:
For old versions of TorchVision (<= 1.0.1*)
wget -O MNIST.tar.gz https://activeeon-public.s3.eu-west-2.amazonaws.com/datasets/MNIST.old.tar.gz
tar -zxvf MNIST.tar.gz
conda commands:
conda create --name clusterGANpytorch python=3.6.8 -y
conda activate clusterGANpytorch
install packages
conda install --file requirements.txt
or
pip install -r requirements.txt
or
python setup.py install
2. VAEs for clustering
Paper 1: Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders (https://arxiv.org/abs/1611.02648)
code (authors, lua): https://github.com/Nat-D/GMVAE
code (pytorch): https://github.com/SiyuWang15/GMVAE-pytorch
Paper 2: Variational Deep Embedding : A Generative Approach to Clustering (https://arxiv.org/pdf/1611.05148.pdf)
code (keras): https://github.com/slim1017/VaDE
Paper 3: Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding (https://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_Deep_Clustering_by_Gaussian_Mixture_Variational_Autoencoders_With_Graph_Embedding_ICCV_2019_paper.pdf)
code (PyTorch): https://github.com/ngoc-nguyen-0/DGG
Paper 4: LEARNING LATENT SUPERSTRUCTURES IN VARIATIONAL AUTOENCODERS FOR DEEP MULTIDIMENSIONAL CLUSTERING (https://openreview.net/pdf?id=SJgNwi09Km)
code (PyTorch): https://github.com/eelxpeng/ltvae-release
Miscellaneous:
https://debuggercafe.com/category/autoencoders/
https://debuggercafe.com/convolutional-variational-autoencoder-in-pytorch-on-mnist-dataset/
https://github.com/dragen1860/pytorch-mnist-vae
Paper 1: Deep Continuous Clustering (https://arxiv.org/pdf/1803.01449.pdf)
code (PyTorch): https://github.com/shahsohil/DCC
Sk-learn baseline references:
1. https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
2. https://towardsdatascience.com/unsupervised-learning-of-gaussian-mixture-models-on-a-selu-auto-encoder-not-another-mnist-11fceccc227e
3. https://github.com/aksharas28/Unsupervised-Learning--Clustering-Analysis-on-Fashion-MNIST-Data
4. https://medium.com/sfu-cspmp/distilling-gaussian-mixture-models-701fa9546d9
5. http://www.oranlooney.com/post/ml-from-scratch-part-5-gmm/
6. https://pythonmachinelearning.pro/clustering-with-gaussian-mixture-models/
Datasets:
Deep Clustering repos compilation: https://github.com/zhoushengisnoob/DeepClustering
Beta Was this translation helpful? Give feedback.
All reactions