Skip to content

Commit 0c5a1fa

Browse files
committed
Small corrections to the mathematical functions chapter
1 parent a5a0fdd commit 0c5a1fa

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

src/functions-reference/mathematical_functions.Rmd

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -14,17 +14,18 @@ cat(' * <a href="digamma-appendix.html">Digamma</a>\n')
1414

1515
## Beta {#beta-appendix}
1616

17-
The beta function, $\text{B}(\alpha,\beta)$, computes the normalizing
17+
The beta function, $\text{B}(a, b)$, computes the normalizing
1818
constant for the beta distribution, and is defined for $a > 0$ and $b
1919
> 0$ by \[ \text{B}(a,b) \ = \ \int_0^1 u^{a - 1} (1 - u)^{b - 1} \,
20-
du \ = \ \frac{\Gamma(a) \, \Gamma(b)}{\Gamma(a+b)} \, . \]
20+
du \ = \ \frac{\Gamma(a) \, \Gamma(b)}{\Gamma(a+b)} \, , \]
21+
where $\Gamma(x)$ is the [Gamma function](#gamma-appendix).
2122

2223
## Incomplete Beta {#inc-beta-appendix}
2324

2425
The incomplete beta function, $\text{B}(x; a, b)$, is defined for $x
2526
\in [0, 1]$ and $a, b \geq 0$ such that $a + b \neq 0$ by \[
26-
\text{B}(x; \, a, b) \ = \ \int_0^x u^{a - 1} \, (1 - u)^{b - 1} \,
27-
du, `<\] where $\text{B}(a, b)$ is the beta function defined in
27+
\text{B}(x; \, a, b) \ = \ \int_0^x u^{a - 1} \, (1 - u)^{b - 1} \,
28+
du, \] where $\text{B}(a, b)$ is the beta function defined in
2829
[appendix](#beta-appendix). If $x = 1$, the incomplete beta function
2930
reduces to the beta function, $\text{B}(1; a, b) = \text{B}(a, b)$.
3031

@@ -38,7 +39,7 @@ The gamma function, $\Gamma(x)$, is the generalization of the
3839
factorial function to continuous variables, defined so that for
3940
positive integers $n$, \[ \Gamma(n+1) = n! \] Generalizing to all
4041
positive numbers and non-integer negative numbers, \[ \Gamma(x) =
41-
\int_0^{\infty} u^{x - 1} \exp(-u) \,n du. \]
42+
\int_0^{\infty} u^{x - 1} \exp(-u) \, du. \]
4243

4344
## Digamma {#digamma-appendix}
4445

0 commit comments

Comments
 (0)