Skip to content

Commit 1326376

Browse files
authored
Merge pull request #138 from stan-dev/bugfix/log-rising-falling-factorial
Fix signature of log_falling_factorial and log_rising_factorial
2 parents 6ef9c7b + 5a13884 commit 1326376

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

src/functions-reference/real-valued_basic_functions.Rmd

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1010,12 +1010,12 @@ This function generalizes to real numbers using the gamma function.
10101010
For $0 \leq y \leq x$, \[ \mathrm{binomial\_coefficient\_log}(x,y) =
10111011
\log\Gamma(x+1) - \log\Gamma(y+1) - \log\Gamma(x-y+1). \]
10121012

1013-
<!-- real; log_falling_factorial; (real x, int n); -->
1014-
\index{{\tt \bfseries log\_falling\_factorial }!{\tt (real x, int n): real}|hyperpage}
1013+
<!-- real; log_falling_factorial; (real x, real n); -->
1014+
\index{{\tt \bfseries log\_falling\_factorial }!{\tt (real x, real n): real}|hyperpage}
10151015

1016-
`real` **`log_falling_factorial`**`(real x, int n)`<br>\newline
1016+
`real` **`log_falling_factorial`**`(real x, real n)`<br>\newline
10171017
Return the log of the falling factorial of x with power n defined for
1018-
positive x and integer n. \[ \mathrm{log\_falling\_factorial}(x,n) =
1018+
positive x and real n. \[ \mathrm{log\_falling\_factorial}(x,n) =
10191019
\begin{cases} \log (x)_n & \text{if } x > 0 \\ \textrm{error} &
10201020
\text{if } x \leq 0 \end{cases} \]
10211021

@@ -1028,12 +1028,12 @@ and integer n. \[ \mathrm{rising\_factorial}(x,n) = \begin{cases} x^{(n)}
10281028
& \text{if } x > 0 \\ \textrm{error} & \text{if } x \leq 0 \end{cases}
10291029
\] where \[ x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)} \]
10301030

1031-
<!-- real; log_rising_factorial; (real x, int n); -->
1031+
<!-- real; log_rising_factorial; (real x, real n); -->
10321032
\index{{\tt \bfseries log\_rising\_factorial }!{\tt (real x, real n): real}|hyperpage}
10331033

1034-
`real` **`log_rising_factorial`**`(real x, int n)`<br>\newline
1034+
`real` **`log_rising_factorial`**`(real x, real n)`<br>\newline
10351035
Return the log of the rising factorial of x with power n defined for
1036-
positive x and integer n. \[ \mathrm{log\_rising\_factorial}(x,n) =
1036+
positive x and real n. \[ \mathrm{log\_rising\_factorial}(x,n) =
10371037
\begin{cases} \log x^{(n)} & \text{if } x > 0 \\ \textrm{error} &
10381038
\text{if } x \leq 0 \end{cases} \]
10391039

0 commit comments

Comments
 (0)