@@ -30,7 +30,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
3030
3131` y ~ ` ** ` normal ` ** ` (mu, sigma) `
3232
33- Increment target log probability density with ` normal_lpdf( y | mu, sigma) `
33+ Increment target log probability density with ` normal_lpdf(y | mu, sigma) `
3434dropping constant additive terms.
3535<!-- real; normal ~; -->
3636\index{{\tt \bfseries normal }!sampling statement|hyperpage}
@@ -169,7 +169,7 @@ If $x\in \mathbb{R}^{n\cdot m}, \alpha \in \mathbb{R}^n, \beta\in
169169
170170` y ~ ` ** ` normal_id_glm ` ** ` (x, alpha, beta, sigma) `
171171
172- Increment target log probability density with ` normal_id_glm_lpdf( y | x, alpha, beta, sigma) `
172+ Increment target log probability density with ` normal_id_glm_lpdf(y | x, alpha, beta, sigma) `
173173dropping constant additive terms.
174174<!-- real; normal_id_glm ~; -->
175175\index{{\tt \bfseries normal\_ id\_ glm }!sampling statement|hyperpage}
@@ -214,7 +214,7 @@ y}{\sqrt{2}\sigma}\right) . \]
214214
215215` y ~ ` ** ` exp_mod_normal ` ** ` (mu, sigma, lambda) `
216216
217- Increment target log probability density with ` exp_mod_normal_lpdf( y | mu, sigma, lambda) `
217+ Increment target log probability density with ` exp_mod_normal_lpdf(y | mu, sigma, lambda) `
218218dropping constant additive terms.
219219<!-- real; exp_mod_normal ~; -->
220220\index{{\tt \bfseries exp\_ mod\_ normal }!sampling statement|hyperpage}
@@ -274,7 +274,7 @@ If $\xi \in \mathbb{R}$, $\omega \in \mathbb{R}^+$, and $\alpha \in
274274
275275` y ~ ` ** ` skew_normal ` ** ` (xi, omega, alpha) `
276276
277- Increment target log probability density with ` skew_normal_lpdf( y | xi, omega, alpha) `
277+ Increment target log probability density with ` skew_normal_lpdf(y | xi, omega, alpha) `
278278dropping constant additive terms.
279279<!-- real; skew_normal ~; -->
280280\index{{\tt \bfseries skew\_ normal }!sampling statement|hyperpage}
@@ -333,7 +333,7 @@ If $\nu \in \mathbb{R}^+$, $\mu \in \mathbb{R}$, and $\sigma \in
333333
334334` y ~ ` ** ` student_t ` ** ` (nu, mu, sigma) `
335335
336- Increment target log probability density with ` student_t_lpdf( y | nu, mu, sigma) `
336+ Increment target log probability density with ` student_t_lpdf(y | nu, mu, sigma) `
337337dropping constant additive terms.
338338<!-- real; student_t ~; -->
339339\index{{\tt \bfseries student\_ t }!sampling statement|hyperpage}
@@ -390,7 +390,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
390390
391391` y ~ ` ** ` cauchy ` ** ` (mu, sigma) `
392392
393- Increment target log probability density with ` cauchy_lpdf( y | mu, sigma) `
393+ Increment target log probability density with ` cauchy_lpdf(y | mu, sigma) `
394394dropping constant additive terms.
395395<!-- real; cauchy ~; -->
396396\index{{\tt \bfseries cauchy }!sampling statement|hyperpage}
@@ -458,7 +458,7 @@ a non-centered parameterization by taking \[ \beta^{\text{raw}} \sim
458458
459459` y ~ ` ** ` double_exponential ` ** ` (mu, sigma) `
460460
461- Increment target log probability density with ` double_exponential_lpdf( y | mu, sigma) `
461+ Increment target log probability density with ` double_exponential_lpdf(y | mu, sigma) `
462462dropping constant additive terms.
463463<!-- real; double_exponential ~; -->
464464\index{{\tt \bfseries double\_ exponential }!sampling statement|hyperpage}
@@ -515,7 +515,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
515515
516516` y ~ ` ** ` logistic ` ** ` (mu, sigma) `
517517
518- Increment target log probability density with ` logistic_lpdf( y | mu, sigma) `
518+ Increment target log probability density with ` logistic_lpdf(y | mu, sigma) `
519519dropping constant additive terms.
520520<!-- real; logistic ~; -->
521521\index{{\tt \bfseries logistic }!sampling statement|hyperpage}
@@ -571,7 +571,7 @@ If $\mu \in \mathbb{R}$ and $\beta \in \mathbb{R}^+$, then for $y \in
571571
572572` y ~ ` ** ` gumbel ` ** ` (mu, beta) `
573573
574- Increment target log probability density with ` gumbel_lpdf( y | mu, beta) `
574+ Increment target log probability density with ` gumbel_lpdf(y | mu, beta) `
575575dropping constant additive terms.
576576<!-- real; gumbel ~; -->
577577\index{{\tt \bfseries gumbel }!sampling statement|hyperpage}
0 commit comments