Skip to content

Commit 682d6d7

Browse files
authored
Merge pull request #904 from Franzi2114/patch-1
Update positive_lower-bounded_distributions.qmd; correction wiener description. Closes #748
2 parents 3c8904e + a3aa71b commit 682d6d7

File tree

1 file changed

+13
-5
lines changed

1 file changed

+13
-5
lines changed

src/functions-reference/positive_lower-bounded_distributions.qmd

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -198,14 +198,22 @@ f_s(t^*\mid0,1,\beta) = \sum_{k=-\infty}^\infty \frac{1}{\sqrt{2\pi(t^*)^3}}(\be
198198

199199
Which of these is used in the computations depends on which expression requires the smaller number of components $k$ to guarantee a pre-specified precision
200200

201-
In the case where $s_{\delta}$, $s_{\beta}$, and $s_{\tau}$ are all $0$, this simplifies to
201+
In the case where $s_{\delta}$, $s_{\beta}$, and $s_{\tau}$ are all $0$, this simplifies to one representation that converges fast for small reaction-time values ("small time expansion"):
202202
\begin{equation*}
203203
\text{Wiener}(y|\alpha, \tau, \beta, \delta) =
204-
\frac{\alpha^3}{(y-\tau)^{3/2}} \exp \! \left(- \delta \alpha \beta -
204+
\frac{\alpha}{(y-\tau)^{3/2}} \exp \! \left(- \delta \alpha \beta -
205205
\frac{\delta^2(y-\tau)}{2}\right) \sum_{k = - \infty}^{\infty} (2k +
206-
\beta) \phi \! \left(\frac{2k \alpha + \beta}{\sqrt{y - \tau}}\right)
207-
\end{equation*} where $\phi(x)$ denotes the standard normal density function; see
208-
[@Feller1968], [@NavarroFuss2009].
206+
\beta) \phi \! \left(\frac{(2k + \beta)\alpha }{\sqrt{y - \tau}}\right),
207+
\end{equation*} where $\phi(x)$ denotes the standard normal density function;
208+
209+
and one representation that converges fast for large reaction-time values ("large time expansion"):
210+
\begin{equation*}
211+
\text{Wiener}(y|\alpha, \tau, \beta, \delta) =
212+
\frac{\pi}{\alpha^2} \exp \! \left(- \delta \alpha \beta -
213+
\frac{\delta^2(y-\tau)}{2}\right) \sum_{k = 1}^{\infty} k \exp \! \left(-\frac{k^2\pi^2(y-\tau)};
214+
{2\alpha^2}\right) \sin \!(k\pi\beta)
215+
\end{equation*}
216+
see [@Feller1968], [@NavarroFuss2009].
209217

210218
### Distribution statement
211219

0 commit comments

Comments
 (0)