@@ -30,7 +30,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
3030
3131` y ~ ` ** ` normal ` ** ` (mu, sigma) `
3232
33- Increment target log probability density with ` normal_lpdf( y | mu, sigma) `
33+ Increment target log probability density with ` normal_lpdf(y | mu, sigma) `
3434dropping constant additive terms.
3535<!-- real; normal ~; -->
3636\index{{\tt \bfseries normal }!sampling statement|hyperpage}
@@ -60,8 +60,9 @@ be scaled and translated for anything other than a standard normal.
6060The log of the cumulative normal distribution of y given location mu
6161and scale sigma; normal_lcdf will underflow to $-\infty$ for
6262$\frac{{y}-{\mu}}{{\sigma}}$ below -37.5 and overflow to 0 for
63- $\frac{{y}-{\mu}}{{\sigma}}$ above 8.25; see above for discussion of
64- ` Phi_approx ` as an alternative.
63+ $\frac{{y}-{\mu}}{{\sigma}}$ above 8.25; ` log(Phi_approx(...)) ` is more
64+ robust in the tails, but must be scaled and translated for anything other
65+ than a standard normal.
6566
6667<!-- real; normal_lccdf; (reals y | reals mu, reals sigma); -->
6768\index{{\tt \bfseries normal\_ lccdf }!{\tt (reals y \textbar\ reals mu, reals sigma): real}|hyperpage}
@@ -70,8 +71,9 @@ $\frac{{y}-{\mu}}{{\sigma}}$ above 8.25; see above for discussion of
7071The log of the complementary cumulative normal distribution of y given
7172location mu and scale sigma; normal_lccdf will overflow to 0 for
7273$\frac{{y}-{\mu}}{{\sigma}}$ below -37.5 and underflow to $-\infty$
73- for $\frac{{y}-{\mu}}{{\sigma}}$ above 8.25; see above for discussion
74- of ` Phi_approx ` as an alternative.
74+ for $\frac{{y}-{\mu}}{{\sigma}}$ above 8.25; ` log1m(Phi_approx(...)) ` is
75+ more robust in the tails, but must be scaled and translated for anything
76+ other than a standard normal.
7577
7678<!-- R; normal_rng; (reals mu, reals sigma); -->
7779\index{{\tt \bfseries normal\_ rng }!{\tt (reals mu, reals sigma): R}|hyperpage}
@@ -87,7 +89,7 @@ For a description of argument and return types, see section
8789The standard normal distribution is so-called because its parameters
8890are the units for their respective operations---the location (mean) is
8991zero and the scale (standard deviation) one. The standard normal is
90- parameter free and the unit parameters allow considerable
92+ parameter- free, and the unit parameters allow considerable
9193simplification of the expression for the density. \[
9294\text{StdNormal}(y) \ = \ \text{Normal}(y \mid 0, 1) \ = \
9395\frac{1}{\sqrt{2 \pi}} \, \exp \left( \frac{-y^2}{2} \right)\! . \] Up
@@ -97,11 +99,16 @@ With no logarithm, no subtraction, and no division by a parameter, the
9799standard normal log density is much more efficient to compute than the
98100normal log density with constant location $0$ and scale $1$.
99101
100- ### Stan Functions
102+ ### Sampling Statement
101103
102- Only the log probabilty density function is available for the standard
103- normal distribution; for other functions, use the ` normal_ ` versions
104- with parameters $\mu = 0$ and $\sigma = 1$.
104+ ` y ~ ` ** ` std_normal ` ** ` () `
105+
106+ Increment target log probability density with ` std_normal_lpdf(y) `
107+ dropping constant additive terms.
108+ <!-- real; std_normal ~; -->
109+ \index{{\tt \bfseries std\_ normal }!sampling statement|hyperpage}
110+
111+ ### Stan Functions
105112
106113<!-- real; std_normal_lpdf; (reals y); -->
107114\index{{\tt \bfseries std\_ normal\_ lpdf }!{\tt (reals y): real}|hyperpage}
@@ -110,14 +117,38 @@ with parameters $\mu = 0$ and $\sigma = 1$.
110117The standard normal (location zero, scale one) log probability density
111118of y.
112119
113- ### Sampling Statement
120+ <!-- real; std_normal_cdf; (reals y); -->
121+ \index{{\tt \bfseries std\_ normal\_ cdf }!{\tt (reals y): real}|hyperpage}
114122
115- ` y ~ ` ** ` std_normal ` ** ` (reals y) `
123+ ` real ` ** ` std_normal_cdf ` ** ` (reals y) ` <br >\newline
124+ The cumulative standard normal distribution of y; std_normal_cdf will
125+ underflow to 0 for $y$ below -37.5 and overflow to 1 for $y$ above 8.25;
126+ the function ` Phi_approx ` is more robust in the tails.
127+
128+ <!-- real; std_normal_lcdf; (reals y); -->
129+ \index{{\tt \bfseries std\_ normal\_ lcdf }!{\tt (reals y): real}|hyperpage}
130+
131+ ` real ` ** ` std_normal_lcdf ` ** ` (reals y) ` <br >\newline
132+ The log of the cumulative standard normal distribution of y; std_normal_lcdf
133+ will underflow to $-\infty$ for $y$ below -37.5 and overflow to 0 for $y$
134+ above 8.25; ` log(Phi_approx(...)) ` is more robust in the tails.
135+
136+ <!-- real; std_normal_lccdf; (reals y); -->
137+ \index{{\tt \bfseries std\_ normal\_ lccdf }!{\tt (reals y): real}|hyperpage}
138+
139+ ` real ` ** ` std_normal_lccdf ` ** ` (reals y) ` <br >\newline
140+ The log of the complementary cumulative standard normal distribution of y;
141+ std_normal_lccdf will overflow to 0 for $y$ below -37.5 and underflow to
142+ $-\infty$ for $y$ above 8.25; ` log1m(Phi_approx(...)) ` is more robust in the
143+ tails.
144+
145+ <!-- real; std_normal_rng; (); -->
146+ \index{{\tt \bfseries std\_ normal\_ rng }!{\tt (): real}|hyperpage}
147+
148+ ` real ` ** ` std_normal_rng ` ** ` () ` <br >\newline
149+ Generate a normal variate with location zero and scale one; may only
150+ be used in transformed data and generated quantities blocks.
116151
117- Increment target log probability density with ` std_normal_lpdf(y) `
118- dropping constant additive terms.
119- <!-- real; std_normal ~; -->
120- \index{{\tt \bfseries std\_ normal }!sampling statement|hyperpage}
121152
122153## Normal-Id Generalised Linear Model (Linear Regression) {#normal-id-glm}
123154
@@ -138,7 +169,7 @@ If $x\in \mathbb{R}^{n\cdot m}, \alpha \in \mathbb{R}^n, \beta\in
138169
139170` y ~ ` ** ` normal_id_glm ` ** ` (x, alpha, beta, sigma) `
140171
141- Increment target log probability density with ` normal_id_glm_lpdf( y | x, alpha, beta, sigma) `
172+ Increment target log probability density with ` normal_id_glm_lpdf(y | x, alpha, beta, sigma) `
142173dropping constant additive terms.
143174<!-- real; normal_id_glm ~; -->
144175\index{{\tt \bfseries normal\_ id\_ glm }!sampling statement|hyperpage}
@@ -183,7 +214,7 @@ y}{\sqrt{2}\sigma}\right) . \]
183214
184215` y ~ ` ** ` exp_mod_normal ` ** ` (mu, sigma, lambda) `
185216
186- Increment target log probability density with ` exp_mod_normal_lpdf( y | mu, sigma, lambda) `
217+ Increment target log probability density with ` exp_mod_normal_lpdf(y | mu, sigma, lambda) `
187218dropping constant additive terms.
188219<!-- real; exp_mod_normal ~; -->
189220\index{{\tt \bfseries exp\_ mod\_ normal }!sampling statement|hyperpage}
@@ -243,7 +274,7 @@ If $\xi \in \mathbb{R}$, $\omega \in \mathbb{R}^+$, and $\alpha \in
243274
244275` y ~ ` ** ` skew_normal ` ** ` (xi, omega, alpha) `
245276
246- Increment target log probability density with ` skew_normal_lpdf( y | xi, omega, alpha) `
277+ Increment target log probability density with ` skew_normal_lpdf(y | xi, omega, alpha) `
247278dropping constant additive terms.
248279<!-- real; skew_normal ~; -->
249280\index{{\tt \bfseries skew\_ normal }!sampling statement|hyperpage}
@@ -302,7 +333,7 @@ If $\nu \in \mathbb{R}^+$, $\mu \in \mathbb{R}$, and $\sigma \in
302333
303334` y ~ ` ** ` student_t ` ** ` (nu, mu, sigma) `
304335
305- Increment target log probability density with ` student_t_lpdf( y | nu, mu, sigma) `
336+ Increment target log probability density with ` student_t_lpdf(y | nu, mu, sigma) `
306337dropping constant additive terms.
307338<!-- real; student_t ~; -->
308339\index{{\tt \bfseries student\_ t }!sampling statement|hyperpage}
@@ -359,7 +390,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
359390
360391` y ~ ` ** ` cauchy ` ** ` (mu, sigma) `
361392
362- Increment target log probability density with ` cauchy_lpdf( y | mu, sigma) `
393+ Increment target log probability density with ` cauchy_lpdf(y | mu, sigma) `
363394dropping constant additive terms.
364395<!-- real; cauchy ~; -->
365396\index{{\tt \bfseries cauchy }!sampling statement|hyperpage}
@@ -427,7 +458,7 @@ a non-centered parameterization by taking \[ \beta^{\text{raw}} \sim
427458
428459` y ~ ` ** ` double_exponential ` ** ` (mu, sigma) `
429460
430- Increment target log probability density with ` double_exponential_lpdf( y | mu, sigma) `
461+ Increment target log probability density with ` double_exponential_lpdf(y | mu, sigma) `
431462dropping constant additive terms.
432463<!-- real; double_exponential ~; -->
433464\index{{\tt \bfseries double\_ exponential }!sampling statement|hyperpage}
@@ -484,7 +515,7 @@ If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in
484515
485516` y ~ ` ** ` logistic ` ** ` (mu, sigma) `
486517
487- Increment target log probability density with ` logistic_lpdf( y | mu, sigma) `
518+ Increment target log probability density with ` logistic_lpdf(y | mu, sigma) `
488519dropping constant additive terms.
489520<!-- real; logistic ~; -->
490521\index{{\tt \bfseries logistic }!sampling statement|hyperpage}
@@ -540,7 +571,7 @@ If $\mu \in \mathbb{R}$ and $\beta \in \mathbb{R}^+$, then for $y \in
540571
541572` y ~ ` ** ` gumbel ` ** ` (mu, beta) `
542573
543- Increment target log probability density with ` gumbel_lpdf( y | mu, beta) `
574+ Increment target log probability density with ` gumbel_lpdf(y | mu, beta) `
544575dropping constant additive terms.
545576<!-- real; gumbel ~; -->
546577\index{{\tt \bfseries gumbel }!sampling statement|hyperpage}
0 commit comments