|
| 1 | +// Code generated by Stan version 1.2 |
| 2 | + |
| 3 | +#include <stan/model/model_header.hpp> |
| 4 | + |
| 5 | +namespace bernoulli_model_namespace { |
| 6 | + |
| 7 | +using std::vector; |
| 8 | +using std::string; |
| 9 | +using std::stringstream; |
| 10 | +using stan::agrad::var; |
| 11 | +using stan::model::prob_grad_ad; |
| 12 | +using stan::math::get_base1; |
| 13 | +using stan::math::stan_print; |
| 14 | +using stan::io::dump; |
| 15 | +using std::istream; |
| 16 | +using namespace stan::math; |
| 17 | +using namespace stan::prob; |
| 18 | +using namespace stan::agrad; |
| 19 | + |
| 20 | +typedef Eigen::Matrix<double,Eigen::Dynamic,1> vector_d; |
| 21 | +typedef Eigen::Matrix<double,1,Eigen::Dynamic> row_vector_d; |
| 22 | +typedef Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> matrix_d; |
| 23 | +typedef Eigen::Matrix<stan::agrad::var,Eigen::Dynamic,1> vector_v; |
| 24 | +typedef Eigen::Matrix<stan::agrad::var,1,Eigen::Dynamic> row_vector_v; |
| 25 | +typedef Eigen::Matrix<stan::agrad::var,Eigen::Dynamic,Eigen::Dynamic> matrix_v; |
| 26 | + |
| 27 | +class bernoulli_model : public prob_grad_ad { |
| 28 | +private: |
| 29 | + int N; |
| 30 | + vector<int> y; |
| 31 | +public: |
| 32 | + bernoulli_model(stan::io::var_context& context__, |
| 33 | + std::ostream* pstream__ = 0) |
| 34 | + : prob_grad_ad::prob_grad_ad(0) { |
| 35 | + static const char* function__ = "bernoulli_model_namespace::bernoulli_model(%1%)"; |
| 36 | + (void) function__; // dummy call to supress warning |
| 37 | + size_t pos__; |
| 38 | + (void) pos__; // dummy call to supress warning |
| 39 | + std::vector<int> vals_i__; |
| 40 | + std::vector<double> vals_r__; |
| 41 | + context__.validate_dims("data initialization", "N", "int", context__.to_vec()); |
| 42 | + N = int(0); |
| 43 | + vals_i__ = context__.vals_i("N"); |
| 44 | + pos__ = 0; |
| 45 | + N = vals_i__[pos__++]; |
| 46 | + context__.validate_dims("data initialization", "y", "int", context__.to_vec(N)); |
| 47 | + stan::math::validate_non_negative_index("y", "N", N); |
| 48 | + y = std::vector<int>(N,int(0)); |
| 49 | + vals_i__ = context__.vals_i("y"); |
| 50 | + pos__ = 0; |
| 51 | + size_t y_limit_0__ = N; |
| 52 | + for (size_t i_0__ = 0; i_0__ < y_limit_0__; ++i_0__) { |
| 53 | + y[i_0__] = vals_i__[pos__++]; |
| 54 | + } |
| 55 | + // validate data |
| 56 | + try { |
| 57 | + check_greater_or_equal(function__,N,0,"N"); |
| 58 | + } catch (std::domain_error& e) { throw std::domain_error(std::string("Invalid value of N: ") + std::string(e.what())); }; |
| 59 | + for (int k0__ = 0; k0__ < N; ++k0__) { |
| 60 | + try { |
| 61 | + check_greater_or_equal(function__,y[k0__],0,"y[k0__]"); |
| 62 | + check_less_or_equal(function__,y[k0__],1,"y[k0__]"); |
| 63 | + } catch (std::domain_error& e) { throw std::domain_error(std::string("Invalid value of y: ") + std::string(e.what())); }; |
| 64 | + } |
| 65 | + |
| 66 | + // validate transformed data |
| 67 | + |
| 68 | + set_param_ranges(); |
| 69 | + } // dump ctor |
| 70 | + |
| 71 | + void set_param_ranges() { |
| 72 | + num_params_r__ = 0U; |
| 73 | + param_ranges_i__.clear(); |
| 74 | + ++num_params_r__; |
| 75 | + } |
| 76 | + |
| 77 | + void transform_inits(const stan::io::var_context& context__, |
| 78 | + std::vector<int>& params_i__, |
| 79 | + std::vector<double>& params_r__) { |
| 80 | + stan::io::writer<double> writer__(params_r__,params_i__); |
| 81 | + size_t pos__; |
| 82 | + std::vector<double> vals_r__; |
| 83 | + std::vector<int> vals_i__; |
| 84 | + |
| 85 | + |
| 86 | + if (!(context__.contains_r("theta"))) |
| 87 | + throw std::runtime_error("variable theta missing"); |
| 88 | + vals_r__ = context__.vals_r("theta"); |
| 89 | + pos__ = 0U; |
| 90 | + context__.validate_dims("initialization", "theta", "double", context__.to_vec()); |
| 91 | + double theta(0); |
| 92 | + theta = vals_r__[pos__++]; |
| 93 | + writer__.scalar_lub_unconstrain(0,1,theta); |
| 94 | + params_r__ = writer__.data_r(); |
| 95 | + params_i__ = writer__.data_i(); |
| 96 | + } |
| 97 | + |
| 98 | + var log_prob(vector<var>& params_r__, |
| 99 | + vector<int>& params_i__, |
| 100 | + std::ostream* pstream__ = 0) { |
| 101 | + |
| 102 | + // Note: this is not a memory leak. Memory will be cleaned up with the arena allocator |
| 103 | + stan::agrad::vari* DUMMY_VARI_PTR__ = new vari(std::numeric_limits<double>::quiet_NaN(),false); |
| 104 | + stan::agrad::var DUMMY_VAR__ = var(DUMMY_VARI_PTR__); |
| 105 | + (void) DUMMY_VAR__; // suppress unused var warning |
| 106 | + |
| 107 | + var lp__(0.0); |
| 108 | + |
| 109 | + // model parameters |
| 110 | + stan::io::reader<var> in__(params_r__,params_i__); |
| 111 | + |
| 112 | + var theta = in__.scalar_lub_constrain(0,1,lp__); |
| 113 | + (void) theta; // supress unused variable warning |
| 114 | + |
| 115 | + // transformed parameters |
| 116 | + |
| 117 | + // initialized transformed params to avoid seg fault on val access |
| 118 | + |
| 119 | + |
| 120 | + // validate transformed parameters |
| 121 | + |
| 122 | + const char* function__ = "validate transformed params %1%"; |
| 123 | + (void) function__; // dummy to suppress unused var warning |
| 124 | + // model body |
| 125 | + lp__ += stan::prob::beta_log<true>(theta, 1, 1); |
| 126 | + for (int n = 1; n <= N; ++n) { |
| 127 | + lp__ += stan::prob::bernoulli_log<true>(get_base1(y,n,"y",1), theta); |
| 128 | + } |
| 129 | + |
| 130 | + return lp__; |
| 131 | + |
| 132 | + } // log_prob(...var...) |
| 133 | + |
| 134 | + |
| 135 | + void get_param_names(std::vector<std::string>& names__) { |
| 136 | + names__.resize(0); |
| 137 | + names__.push_back("theta"); |
| 138 | + } |
| 139 | + |
| 140 | + |
| 141 | + void get_dims(std::vector<std::vector<size_t> >& dimss__) { |
| 142 | + dimss__.resize(0); |
| 143 | + std::vector<size_t> dims__; |
| 144 | + dims__.resize(0); |
| 145 | + dimss__.push_back(dims__); |
| 146 | + } |
| 147 | + |
| 148 | + void write_array(std::vector<double>& params_r__, |
| 149 | + std::vector<int>& params_i__, |
| 150 | + std::vector<double>& vars__, |
| 151 | + std::ostream* pstream__ = 0) { |
| 152 | + vars__.resize(0); |
| 153 | + stan::io::reader<double> in__(params_r__,params_i__); |
| 154 | + static const char* function__ = "bernoulli_model_namespace::write_array(%1%)"; |
| 155 | + (void) function__; // dummy call to supress warning |
| 156 | + // read-transform, write parameters |
| 157 | + double theta = in__.scalar_lub_constrain(0,1); |
| 158 | + vars__.push_back(theta); |
| 159 | + |
| 160 | + // declare and define transformed parameters |
| 161 | + double lp__ = 0.0; |
| 162 | + (void) lp__; // dummy call to supress warning |
| 163 | + |
| 164 | + |
| 165 | + // validate transformed parameters |
| 166 | + |
| 167 | + // write transformed parameters |
| 168 | + |
| 169 | + // declare and define generated quantities |
| 170 | + |
| 171 | + |
| 172 | + // validate generated quantities |
| 173 | + |
| 174 | + // write generated quantities |
| 175 | + } |
| 176 | + |
| 177 | + |
| 178 | + void write_csv_header(std::ostream& o__) { |
| 179 | + stan::io::csv_writer writer__(o__); |
| 180 | + writer__.comma(); |
| 181 | + o__ << "theta"; |
| 182 | + writer__.newline(); |
| 183 | + } |
| 184 | + |
| 185 | + void write_csv(std::vector<double>& params_r__, |
| 186 | + std::vector<int>& params_i__, |
| 187 | + std::ostream& o__, |
| 188 | + std::ostream* pstream__ = 0) { |
| 189 | + stan::io::reader<double> in__(params_r__,params_i__); |
| 190 | + stan::io::csv_writer writer__(o__); |
| 191 | + static const char* function__ = "bernoulli_model_namespace::write_csv(%1%)"; |
| 192 | + (void) function__; // dummy call to supress warning |
| 193 | + // read-transform, write parameters |
| 194 | + double theta = in__.scalar_lub_constrain(0,1); |
| 195 | + writer__.write(theta); |
| 196 | + |
| 197 | + // declare, define and validate transformed parameters |
| 198 | + double lp__ = 0.0; |
| 199 | + (void) lp__; // dummy call to supress warning |
| 200 | + |
| 201 | + |
| 202 | + |
| 203 | + // write transformed parameters |
| 204 | + |
| 205 | + // declare and define generated quantities |
| 206 | + |
| 207 | + |
| 208 | + // validate generated quantities |
| 209 | + |
| 210 | + // write generated quantities |
| 211 | + writer__.newline(); |
| 212 | + } |
| 213 | + |
| 214 | +}; // model |
| 215 | + |
| 216 | +} // namespace |
| 217 | + |
| 218 | +int main(int argc, const char* argv[]) { |
| 219 | + try { |
| 220 | + stan::gm::nuts_command<bernoulli_model_namespace::bernoulli_model>(argc,argv); |
| 221 | + } catch (std::exception& e) { |
| 222 | + std::cerr << std::endl << "Exception: " << e.what() << std::endl; |
| 223 | + std::cerr << "Diagnostic information: " << std::endl << boost::diagnostic_information(e) << std::endl; |
| 224 | + return -1; |
| 225 | + } |
| 226 | +} |
| 227 | + |
0 commit comments