1- Package: loo
21Type: Package
3- Title: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models
2+ Package: loo
3+ Title: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
4+ Models
45Version: 2.8.0.9000
56Date: 2024-07-03
6- Authors@R: c(person("Aki", "Vehtari", email = "
[email protected] ", role = c("aut")),
7- person("Jonah", "Gabry", email = "
[email protected] ", role = c("cre", "aut")),
8- person("Måns", "Magnusson", role = c("aut")),
9- person("Yuling", "Yao", role = c("aut")),
10- person("Paul-Christian", "Bürkner", role = c("aut")),
11- person("Topi", "Paananen", role = c("aut")),
12- person("Andrew", "Gelman", role = c("aut")),
13- person("Ben", "Goodrich", role = c("ctb")),
14- person("Juho", "Piironen", role = c("ctb")),
15- person("Bruno", "Nicenboim", role = c("ctb")),
16- person("Leevi", "Lindgren", role = c("ctb")))
7+ Authors@R: c(
8+ person("Aki", "Vehtari", , "
[email protected] ", role = "aut"),
9+ person("Jonah", "Gabry", , "
[email protected] ", role = c("cre", "aut")),
10+ person("Måns", "Magnusson", role = "aut"),
11+ person("Yuling", "Yao", role = "aut"),
12+ person("Paul-Christian", "Bürkner", role = "aut"),
13+ person("Topi", "Paananen", role = "aut"),
14+ person("Andrew", "Gelman", role = "aut"),
15+ person("Ben", "Goodrich", role = "ctb"),
16+ person("Juho", "Piironen", role = "ctb"),
17+ person("Bruno", "Nicenboim", role = "ctb"),
18+ person("Leevi", "Lindgren", role = "ctb")
19+ )
1720Maintainer: Jonah Gabry <
[email protected] >
18- URL: https://mc-stan.org/loo/, https://discourse.mc-stan.org
19- BugReports: https://github.com/stan-dev/loo/issues
2021Description: Efficient approximate leave-one-out cross-validation (LOO)
21- for Bayesian models fit using Markov chain Monte Carlo, as
22- described in Vehtari, Gelman, and Gabry (2017)
23- <doi:10.1007/s11222-016-9696-4>.
24- The approximation uses Pareto smoothed importance sampling (PSIS),
25- a new procedure for regularizing importance weights.
26- As a byproduct of the calculations, we also obtain approximate
27- standard errors for estimated predictive errors and for the comparison
28- of predictive errors between models. The package also provides methods
29- for using stacking and other model weighting techniques to average
30- Bayesian predictive distributions.
22+ for Bayesian models fit using Markov chain Monte Carlo, as described
23+ in Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>.
24+ The approximation uses Pareto smoothed importance sampling (PSIS), a
25+ new procedure for regularizing importance weights. As a byproduct of
26+ the calculations, we also obtain approximate standard errors for
27+ estimated predictive errors and for the comparison of predictive
28+ errors between models. The package also provides methods for using
29+ stacking and other model weighting techniques to average Bayesian
30+ predictive distributions.
3131License: GPL (>=3)
32- LazyData: TRUE
32+ URL: https://mc-stan.org/loo/, https://discourse.mc-stan.org
33+ BugReports: https://github.com/stan-dev/loo/issues
3334Depends:
3435 R (>= 3.1.2)
3536Imports:
@@ -50,9 +51,13 @@ Suggests:
5051 rstantools,
5152 spdep,
5253 testthat (>= 2.1.0)
54+ VignetteBuilder:
55+ knitr
5356Config/testthat/edition: 3
54- VignetteBuilder: knitr
57+ Config/testthat/parallel: true
58+ Config/testthat/start-first: loo_subsampling_cases, loo_subsampling
5559Encoding: UTF-8
56- SystemRequirements: pandoc (>= 1.12.3), pandoc-citeproc
57- RoxygenNote: 7.3.2
60+ LazyData: TRUE
5861Roxygen: list(markdown = TRUE)
62+ RoxygenNote: 7.3.2
63+ SystemRequirements: pandoc (>= 1.12.3), pandoc-citeproc
0 commit comments