Skip to content

Commit 6072abb

Browse files
committed
Auto-generated commit
1 parent d514144 commit 6072abb

34 files changed

+3933
-1
lines changed

CHANGELOG.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,13 @@
44

55
<section class="release" id="unreleased">
66

7-
## Unreleased (2025-12-26)
7+
## Unreleased (2025-12-27)
88

99
<section class="features">
1010

1111
### Features
1212

13+
- [`7be3235`](https://github.com/stdlib-js/stdlib/commit/7be3235f58dab6f5a5ac11a58ddad8d5ba2fcb1a) - add `stats/strided/distances/dcosine-similarity` [(#9281)](https://github.com/stdlib-js/stdlib/pull/9281)
1314
- [`9e5b1db`](https://github.com/stdlib-js/stdlib/commit/9e5b1dbcb5c122ac460507aa889a171a8f67bd2e) - add `stats/base/ndarray/stdevpn` [(#9381)](https://github.com/stdlib-js/stdlib/pull/9381)
1415
- [`9a44f1a`](https://github.com/stdlib-js/stdlib/commit/9a44f1ac8a945490b8703f52c32f3aaef3ae1283) - add `stats/base/ndarray/stdevtk` [(#9382)](https://github.com/stdlib-js/stdlib/pull/9382)
1516
- [`d687dfb`](https://github.com/stdlib-js/stdlib/commit/d687dfb2c5fa089b942f3a56ad668ae15ea4eec3) - add `stats/base/ndarray/sstdevch` [(#9383)](https://github.com/stdlib-js/stdlib/pull/9383)
@@ -3538,6 +3539,7 @@ A total of 560 issues were closed in this release:
35383539

35393540
<details>
35403541

3542+
- [`7be3235`](https://github.com/stdlib-js/stdlib/commit/7be3235f58dab6f5a5ac11a58ddad8d5ba2fcb1a) - **feat:** add `stats/strided/distances/dcosine-similarity` [(#9281)](https://github.com/stdlib-js/stdlib/pull/9281) _(by Nakul Krishnakumar, Athan Reines, stdlib-bot)_
35413543
- [`9e5b1db`](https://github.com/stdlib-js/stdlib/commit/9e5b1dbcb5c122ac460507aa889a171a8f67bd2e) - **feat:** add `stats/base/ndarray/stdevpn` [(#9381)](https://github.com/stdlib-js/stdlib/pull/9381) _(by Pratik)_
35423544
- [`9a44f1a`](https://github.com/stdlib-js/stdlib/commit/9a44f1ac8a945490b8703f52c32f3aaef3ae1283) - **feat:** add `stats/base/ndarray/stdevtk` [(#9382)](https://github.com/stdlib-js/stdlib/pull/9382) _(by Pratik)_
35433545
- [`d687dfb`](https://github.com/stdlib-js/stdlib/commit/d687dfb2c5fa089b942f3a56ad668ae15ea4eec3) - **feat:** add `stats/base/ndarray/sstdevch` [(#9383)](https://github.com/stdlib-js/stdlib/pull/9383) _(by Kaustubh Patange, Athan Reines)_
Lines changed: 336 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,336 @@
1+
<!--
2+
3+
@license Apache-2.0
4+
5+
Copyright (c) 2025 The Stdlib Authors.
6+
7+
Licensed under the Apache License, Version 2.0 (the "License");
8+
you may not use this file except in compliance with the License.
9+
You may obtain a copy of the License at
10+
11+
http://www.apache.org/licenses/LICENSE-2.0
12+
13+
Unless required by applicable law or agreed to in writing, software
14+
distributed under the License is distributed on an "AS IS" BASIS,
15+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16+
See the License for the specific language governing permissions and
17+
limitations under the License.
18+
19+
-->
20+
21+
# dcosineSimilarity
22+
23+
> Compute the cosine similarity of two double-precision floating-point strided arrays.
24+
25+
<section class="intro">
26+
27+
The [cosine similarity][wikipedia-cosine-similarity] is defined as
28+
29+
<!-- <equation class="equation" label="eq:cosine_similarity" align="center" raw="S_C(A, B) = \cos(\theta) = \frac{A \cdot B}{\lVert A \rVert \, \lVert B \rVert} = \frac{\sum_{i=0}^{N-1} A_i B_i}{\sqrt{\sum_{i=0}^{N-1} A_i^2} \cdot \sqrt{\sum_{i=0}^{N-1} B_i^2}}" alt="Equation for cosine similarity."> -->
30+
31+
```math
32+
S_C(A, B) = \cos(\theta) = \frac{A \cdot B}{\lVert A \rVert \, \lVert B \rVert} = \frac{\sum_{i=0}^{N-1} A_i B_i}{\sqrt{\sum_{i=0}^{N-1} A_i^2} \cdot \sqrt{\sum_{i=0}^{N-1} B_i^2}}
33+
```
34+
35+
<!-- </equation> -->
36+
37+
where `A_i` and `B_i` are the _ith_ components of vectors **A** and **B**, respectively.
38+
39+
</section>
40+
41+
<!-- /.intro -->
42+
43+
<section class="usage">
44+
45+
## Usage
46+
47+
```javascript
48+
var dcosineSimilarity = require( '@stdlib/stats/strided/distances/dcosine-similarity' );
49+
```
50+
51+
#### dcosineSimilarity( N, x, strideX, y, strideY )
52+
53+
Computes the cosine similarity of two double-precision floating-point strided arrays.
54+
55+
```javascript
56+
var Float64Array = require( '@stdlib/array/float64' );
57+
58+
var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
59+
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
60+
61+
var z = dcosineSimilarity( x.length, x, 1, y, 1 );
62+
// returns ~-0.061
63+
```
64+
65+
The function has the following parameters:
66+
67+
- **N**: number of indexed elements.
68+
- **x**: input [`Float64Array`][@stdlib/array/float64].
69+
- **strideX**: stride length of `x`.
70+
- **y**: input [`Float64Array`][@stdlib/array/float64].
71+
- **strideY**: stride length of `y`.
72+
73+
The `N` and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to calculate the cosine similarity of every other value in `x` and the first `N` elements of `y` in reverse order,
74+
75+
```javascript
76+
var Float64Array = require( '@stdlib/array/float64' );
77+
78+
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
79+
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
80+
81+
var z = dcosineSimilarity( 3, x, 2, y, -1 );
82+
// returns ~0.878
83+
```
84+
85+
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
86+
87+
<!-- eslint-disable stdlib/capitalized-comments -->
88+
89+
```javascript
90+
var Float64Array = require( '@stdlib/array/float64' );
91+
92+
// Initial arrays...
93+
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
94+
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
95+
96+
// Create offset views...
97+
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
98+
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
99+
100+
var z = dcosineSimilarity( 3, x1, 1, y1, 1 );
101+
// returns ~0.982
102+
```
103+
104+
#### dcosineSimilarity.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
105+
106+
Computes the cosine similarity of two double-precision floating-point strided arrays using alternative indexing semantics.
107+
108+
```javascript
109+
var Float64Array = require( '@stdlib/array/float64' );
110+
111+
var x = new Float64Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
112+
var y = new Float64Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
113+
114+
var z = dcosineSimilarity.ndarray( x.length, x, 1, 0, y, 1, 0 );
115+
// returns ~-0.061
116+
```
117+
118+
The function has the following additional parameters:
119+
120+
- **offsetX**: starting index for `x`.
121+
- **offsetY**: starting index for `y`.
122+
123+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the cosine similarity of every other element in `x` starting from the second element with the last 3 elements in `y` in reverse order
124+
125+
```javascript
126+
var Float64Array = require( '@stdlib/array/float64' );
127+
128+
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
129+
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
130+
131+
var z = dcosineSimilarity.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
132+
// returns ~0.895
133+
```
134+
135+
</section>
136+
137+
<!-- /.usage -->
138+
139+
<section class="notes">
140+
141+
## Notes
142+
143+
- If `N <= 0`, both functions return `0.0`.
144+
145+
</section>
146+
147+
<!-- /.notes -->
148+
149+
<section class="examples">
150+
151+
## Examples
152+
153+
<!-- eslint no-undef: "error" -->
154+
155+
```javascript
156+
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
157+
var dcosineSimilarity = require( '@stdlib/stats/strided/distances/dcosine-similarity' );
158+
159+
var opts = {
160+
'dtype': 'float64'
161+
};
162+
var x = discreteUniform( 10, 0, 100, opts );
163+
console.log( x );
164+
165+
var y = discreteUniform( x.length, 0, 10, opts );
166+
console.log( y );
167+
168+
var out = dcosineSimilarity.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
169+
console.log( out );
170+
```
171+
172+
</section>
173+
174+
<!-- /.examples -->
175+
176+
<!-- C interface documentation. -->
177+
178+
* * *
179+
180+
<section class="c">
181+
182+
## C APIs
183+
184+
<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
185+
186+
<section class="intro">
187+
188+
</section>
189+
190+
<!-- /.intro -->
191+
192+
<!-- C usage documentation. -->
193+
194+
<section class="usage">
195+
196+
### Usage
197+
198+
```c
199+
#include "stdlib/stats/strided/distances/dcosine_similarity.h"
200+
```
201+
202+
#### stdlib_strided_dcosine_similarity( N, \*X, strideX, \*Y, strideY )
203+
204+
Computes the cosine similarity of two double-precision floating-point strided arrays.
205+
206+
```c
207+
const double x[] = { 4.0, 2.0, -3.0, 5.0, -1.0 };
208+
const double y[] = { 2.0, 6.0, -1.0, -4.0, 8.0 };
209+
210+
double v = stdlib_strided_dcosine_similarity( 5, x, 1, y, 1 );
211+
// returns ~-0.061
212+
```
213+
214+
The function accepts the following arguments:
215+
216+
- **N**: `[in] CBLAS_INT` number of indexed elements.
217+
- **X**: `[in] double*` first input array.
218+
- **strideX**: `[in] CBLAS_INT` stride length of `X`.
219+
- **Y**: `[in] double*` second input array.
220+
- **strideY**: `[in] CBLAS_INT` stride length of `Y`.
221+
222+
```c
223+
double stdlib_strided_dcosine_similarity( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const double *Y, const CBLAS_INT strideY );
224+
```
225+
226+
<!--lint disable maximum-heading-length-->
227+
228+
#### stdlib_strided_dcosine_similarity_ndarray( N, \*X, strideX, offsetX, \*Y, strideY, offsetY )
229+
230+
<!--lint enable maximum-heading-length-->
231+
232+
Computes the cosine similarity of two double-precision floating-point strided arrays using alternative indexing semantics.
233+
234+
```c
235+
const double x[] = { 4.0, 2.0, -3.0, 5.0, -1.0 };
236+
const double y[] = { 2.0, 6.0, -1.0, -4.0, 8.0 };
237+
238+
double v = stdlib_strided_dcosine_similarity_ndarray( 5, x, -1, 4, y, -1, 4 );
239+
// returns ~0.061
240+
```
241+
242+
The function accepts the following arguments:
243+
244+
- **N**: `[in] CBLAS_INT` number of indexed elements.
245+
- **X**: `[in] double*` first input array.
246+
- **strideX**: `[in] CBLAS_INT` stride length of `X`.
247+
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
248+
- **Y**: `[in] double*` second input array.
249+
- **strideY**: `[in] CBLAS_INT` stride length of `Y`.
250+
- **offsetY**: `[in] CBLAS_INT` starting index for `Y`.
251+
252+
```c
253+
double stdlib_strided_dcosine_similarity_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
254+
```
255+
256+
</section>
257+
258+
<!-- /.usage -->
259+
260+
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
261+
262+
<section class="notes">
263+
264+
</section>
265+
266+
<!-- /.notes -->
267+
268+
<!-- C API usage examples. -->
269+
270+
<section class="examples">
271+
272+
### Examples
273+
274+
```c
275+
#include "stdlib/stats/strided/distances/dcosine_similarity.h"
276+
#include <stdio.h>
277+
278+
int main( void ) {
279+
// Create strided arrays:
280+
const double x[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
281+
const double y[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
282+
283+
// Specify the number of elements:
284+
const int N = 8;
285+
286+
// Specify strides:
287+
const int strideX = 1;
288+
const int strideY = -1;
289+
290+
// Compute the cosine similarity of `x` and `y`:
291+
double sim = stdlib_strided_dcosine_similarity( N, x, strideX, y, strideY );
292+
293+
// Print the result:
294+
printf( "cosine similarity: %lf\n", sim );
295+
296+
// Compute the cosine similarity of `x` and `y` with offsets:
297+
sim = stdlib_strided_dcosine_similarity_ndarray( N, x, strideX, 0, y, strideY, N-1 );
298+
299+
// Print the result:
300+
printf( "cosine similarity: %lf\n", sim );
301+
}
302+
```
303+
304+
</section>
305+
306+
<!-- /.examples -->
307+
308+
</section>
309+
310+
<!-- /.c -->
311+
312+
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
313+
314+
<section class="related">
315+
316+
</section>
317+
318+
<!-- /.related -->
319+
320+
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
321+
322+
<section class="links">
323+
324+
[@stdlib/array/float64]: https://github.com/stdlib-js/array-float64
325+
326+
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
327+
328+
[wikipedia-cosine-similarity]: https://en.wikipedia.org/wiki/Cosine_similarity
329+
330+
<!-- <related-links> -->
331+
332+
<!-- </related-links> -->
333+
334+
</section>
335+
336+
<!-- /.links -->

0 commit comments

Comments
 (0)