Skip to content

Commit 0377a72

Browse files
committed
feat: add stats/strided/nanvariance
Ref: #4797 --- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: passed - task: lint_repl_help status: passed - task: lint_javascript_src status: passed - task: lint_javascript_cli status: na - task: lint_javascript_examples status: passed - task: lint_javascript_tests status: passed - task: lint_javascript_benchmarks status: passed - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: passed - task: lint_typescript_tests status: passed - task: lint_license_headers status: passed ---
1 parent 954b9c7 commit 0377a72

19 files changed

+2584
-0
lines changed
Lines changed: 262 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,262 @@
1+
<!--
2+
3+
@license Apache-2.0
4+
5+
Copyright (c) 2020 The Stdlib Authors.
6+
7+
Licensed under the Apache License, Version 2.0 (the "License");
8+
you may not use this file except in compliance with the License.
9+
You may obtain a copy of the License at
10+
11+
http://www.apache.org/licenses/LICENSE-2.0
12+
13+
Unless required by applicable law or agreed to in writing, software
14+
distributed under the License is distributed on an "AS IS" BASIS,
15+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16+
See the License for the specific language governing permissions and
17+
limitations under the License.
18+
19+
-->
20+
21+
# nanvariance
22+
23+
> Calculate the [variance][variance] of a strided array ignoring `NaN` values.
24+
25+
<section class="intro">
26+
27+
The population [variance][variance] of a finite size population of size `N` is given by
28+
29+
<!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
30+
31+
```math
32+
\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2
33+
```
34+
35+
<!-- <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
36+
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86d4717094f2f0e1d5850ad3208e8591d15792ba/lib/node_modules/@stdlib/stats/strided/nanvariance/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
37+
<br>
38+
</div> -->
39+
40+
<!-- </equation> -->
41+
42+
where the population mean is given by
43+
44+
<!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
45+
46+
```math
47+
\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i
48+
```
49+
50+
<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
51+
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86d4717094f2f0e1d5850ad3208e8591d15792ba/lib/node_modules/@stdlib/stats/strided/nanvariance/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
52+
<br>
53+
</div> -->
54+
55+
<!-- </equation> -->
56+
57+
Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
58+
59+
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
60+
61+
```math
62+
s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2
63+
```
64+
65+
<!-- <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
66+
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86d4717094f2f0e1d5850ad3208e8591d15792ba/lib/node_modules/@stdlib/stats/strided/nanvariance/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
67+
<br>
68+
</div> -->
69+
70+
<!-- </equation> -->
71+
72+
where the sample mean is given by
73+
74+
<!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
75+
76+
```math
77+
\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i
78+
```
79+
80+
<!-- <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
81+
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86d4717094f2f0e1d5850ad3208e8591d15792ba/lib/node_modules/@stdlib/stats/strided/nanvariance/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
82+
<br>
83+
</div> -->
84+
85+
<!-- </equation> -->
86+
87+
The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
88+
89+
</section>
90+
91+
<!-- /.intro -->
92+
93+
<section class="usage">
94+
95+
## Usage
96+
97+
```javascript
98+
var nanvariance = require( '@stdlib/stats/strided/nanvariance' );
99+
```
100+
101+
#### nanvariance( N, correction, x, strideX )
102+
103+
Computes the [variance][variance] of a strided array ignoring `NaN` values.
104+
105+
```javascript
106+
var x = [ 1.0, -2.0, NaN, 2.0 ];
107+
108+
var v = nanvariance( x.length, 1, x, 1 );
109+
// returns ~4.3333
110+
```
111+
112+
The function has the following parameters:
113+
114+
- **N**: number of indexed elements.
115+
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
116+
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
117+
- **strideX**: stride length for `x`.
118+
119+
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
120+
121+
```javascript
122+
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
123+
124+
var v = nanvariance( 5, 1, x, 2 );
125+
// returns 6.25
126+
```
127+
128+
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
129+
130+
<!-- eslint-disable stdlib/capitalized-comments, max-len -->
131+
132+
```javascript
133+
var Float64Array = require( '@stdlib/array/float64' );
134+
135+
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
136+
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
137+
138+
var v = nanvariance( 5, 1, x1, 2 );
139+
// returns 6.25
140+
```
141+
142+
#### nanvariance.ndarray( N, correction, x, strideX, offsetX )
143+
144+
Computes the [variance][variance] of a strided array ignoring `NaN` values and using alternative indexing semantics.
145+
146+
```javascript
147+
var x = [ 1.0, -2.0, NaN, 2.0 ];
148+
149+
var v = nanvariance.ndarray( x.length, 1, x, 1, 0 );
150+
// returns ~4.33333
151+
```
152+
153+
The function has the following additional parameters:
154+
155+
- **offsetX**: starting index for `x`.
156+
157+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element
158+
159+
```javascript
160+
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
161+
162+
var v = nanvariance.ndarray( 5, 1, x, 2, 1 );
163+
// returns 6.25
164+
```
165+
166+
</section>
167+
168+
<!-- /.usage -->
169+
170+
<section class="notes">
171+
172+
## Notes
173+
174+
- If `N <= 0`, both functions return `NaN`.
175+
- If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`.
176+
- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]).
177+
- Depending on the environment, the typed versions ([`dnanvariance`][@stdlib/stats/strided/dnanvariance], [`snanvariance`][@stdlib/stats/base/snanvariance], etc.) are likely to be significantly more performant.
178+
179+
</section>
180+
181+
<!-- /.notes -->
182+
183+
<section class="examples">
184+
185+
## Examples
186+
187+
<!-- eslint no-undef: "error" -->
188+
189+
```javascript
190+
var uniform = require( '@stdlib/random/base/uniform' );
191+
var filledarrayBy = require( '@stdlib/array/filled-by' );
192+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
193+
var nanvariance = require( '@stdlib/stats/strided/nanvariance' );
194+
195+
function rand() {
196+
if ( bernoulli( 0.8 ) < 1 ) {
197+
return NaN;
198+
}
199+
return uniform( -50.0, 50.0 );
200+
}
201+
202+
var x = filledarrayBy( 10, 'float64', rand );
203+
console.log( x );
204+
205+
var v = nanvariance( x.length, 1, x, 1 );
206+
console.log( v );
207+
```
208+
209+
</section>
210+
211+
<!-- /.examples -->
212+
213+
<section class="references">
214+
215+
</section>
216+
217+
<!-- /.references -->
218+
219+
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
220+
221+
<section class="related">
222+
223+
* * *
224+
225+
## See Also
226+
227+
- <span class="package-name">[`@stdlib/stats/strided/dnanvariance`][@stdlib/stats/strided/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring NaN values.</span>
228+
- <span class="package-name">[`@stdlib/stats/base/nanstdev`][@stdlib/stats/base/nanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring NaN values.</span>
229+
- <span class="package-name">[`@stdlib/stats/base/snanvariance`][@stdlib/stats/base/snanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring NaN values.</span>
230+
- <span class="package-name">[`@stdlib/stats/strided/variance`][@stdlib/stats/strided/variance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array.</span>
231+
232+
</section>
233+
234+
<!-- /.related -->
235+
236+
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
237+
238+
<section class="links">
239+
240+
[variance]: https://en.wikipedia.org/wiki/Variance
241+
242+
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
243+
244+
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
245+
246+
[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor
247+
248+
<!-- <related-links> -->
249+
250+
[@stdlib/stats/strided/dnanvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariance
251+
252+
[@stdlib/stats/base/nanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/nanstdev
253+
254+
[@stdlib/stats/base/snanvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanvariance
255+
256+
[@stdlib/stats/strided/variance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/variance
257+
258+
<!-- </related-links> -->
259+
260+
</section>
261+
262+
<!-- /.links -->
Lines changed: 104 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,104 @@
1+
/**
2+
* @license Apache-2.0
3+
*
4+
* Copyright (c) 2020 The Stdlib Authors.
5+
*
6+
* Licensed under the Apache License, Version 2.0 (the "License");
7+
* you may not use this file except in compliance with the License.
8+
* You may obtain a copy of the License at
9+
*
10+
* http://www.apache.org/licenses/LICENSE-2.0
11+
*
12+
* Unless required by applicable law or agreed to in writing, software
13+
* distributed under the License is distributed on an "AS IS" BASIS,
14+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
* See the License for the specific language governing permissions and
16+
* limitations under the License.
17+
*/
18+
19+
'use strict';
20+
21+
// MODULES //
22+
23+
var bench = require( '@stdlib/bench' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
27+
var isnan = require( '@stdlib/math/base/assert/is-nan' );
28+
var pow = require( '@stdlib/math/base/special/pow' );
29+
var pkg = require( './../package.json' ).name;
30+
var nanvariance = require( './../lib/main.js' );
31+
32+
33+
// FUNCTIONS //
34+
35+
/**
36+
* Returns a random number.
37+
*
38+
* @private
39+
* @returns {number} random number
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.8 ) < 1 ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
48+
/**
49+
* Creates a benchmark function.
50+
*
51+
* @private
52+
* @param {PositiveInteger} len - array length
53+
* @returns {Function} benchmark function
54+
*/
55+
function createBenchmark( len ) {
56+
var x = filledarrayBy( len, 'generic', rand );
57+
return benchmark;
58+
59+
function benchmark( b ) {
60+
var v;
61+
var i;
62+
63+
b.tic();
64+
for ( i = 0; i < b.iterations; i++ ) {
65+
v = nanvariance( x.length, 1, x, 1 );
66+
if ( isnan( v ) ) {
67+
b.fail( 'should not return NaN' );
68+
}
69+
}
70+
b.toc();
71+
if ( isnan( v ) ) {
72+
b.fail( 'should not return NaN' );
73+
}
74+
b.pass( 'benchmark finished' );
75+
b.end();
76+
}
77+
}
78+
79+
80+
// MAIN //
81+
82+
/**
83+
* Main execution sequence.
84+
*
85+
* @private
86+
*/
87+
function main() {
88+
var len;
89+
var min;
90+
var max;
91+
var f;
92+
var i;
93+
94+
min = 1; // 10^min
95+
max = 6; // 10^max
96+
97+
for ( i = min; i <= max; i++ ) {
98+
len = pow( 10, i );
99+
f = createBenchmark( len );
100+
bench( pkg+':len='+len, f );
101+
}
102+
}
103+
104+
main();

0 commit comments

Comments
 (0)