You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -83,8 +83,8 @@ The namespace contains the following statistical functions:
83
83
- <spanclass="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
84
84
- <spanclass="signature">[`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
85
85
- <spanclass="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
86
-
- <spanclass="signature">[`dnanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
87
-
- <spanclass="signature">[`dnanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
86
+
- <spanclass="signature">[`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
87
+
- <spanclass="signature">[`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
88
88
- <spanclass="signature">[`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
89
89
- <spanclass="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
90
90
- <spanclass="signature">[`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
0 commit comments