You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- <spanclass="signature">[`cneg( z )`][@stdlib/math/base/ops/cneg]</span><spanclass="delimiter">: </span><spanclass="description">negate a double-precision complex floating-point number.</span>
50
49
- <spanclass="signature">[`cnegf( z )`][@stdlib/math/base/ops/cnegf]</span><spanclass="delimiter">: </span><spanclass="description">negate a single-precision complex floating-point number.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -85,7 +85,7 @@ The namespace contains the following statistical functions:
85
85
- <spanclass="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
86
86
- <spanclass="signature">[`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
87
87
- <spanclass="signature">[`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
88
-
- <spanclass="signature">[`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
88
+
- <spanclass="signature">[`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
89
89
- <spanclass="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
90
90
- <spanclass="signature">[`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
91
91
- <spanclass="signature">[`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
@@ -104,13 +104,13 @@ The namespace contains the following statistical functions:
104
104
- <spanclass="signature">[`dsmeanpn( N, x, strideX )`][@stdlib/stats/base/dsmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
105
105
- <spanclass="signature">[`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
106
106
- <spanclass="signature">[`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
107
-
- <spanclass="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
107
+
- <spanclass="signature">[`dsnanmean( N, x, strideX )`][@stdlib/stats/base/dsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
108
108
- <spanclass="signature">[`dsnanmeanors( N, x, strideX )`][@stdlib/stats/base/dsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
109
109
- <spanclass="signature">[`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dsnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
110
110
- <spanclass="signature">[`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dsnanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
111
111
- <spanclass="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
112
112
- <spanclass="signature">[`dstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
113
-
- <spanclass="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
113
+
- <spanclass="signature">[`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
114
114
- <spanclass="signature">[`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
115
115
- <spanclass="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
116
116
- <spanclass="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
@@ -241,7 +241,7 @@ The namespace contains the following statistical functions:
241
241
- <spanclass="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
242
242
- <spanclass="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array.</span>
243
243
- <spanclass="signature">[`svariancech( N, correction, x, strideX )`][@stdlib/stats/base/svariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
244
-
- <spanclass="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
244
+
- <spanclass="signature">[`svariancepn( N, correction, x, strideX )`][@stdlib/stats/base/svariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
245
245
- <spanclass="signature">[`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
246
246
- <spanclass="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
247
247
- <spanclass="signature">[`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
0 commit comments