Skip to content

Commit 21e1ab2

Browse files
committed
docs: update description
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: passed - task: lint_repl_help status: passed - task: lint_javascript_src status: passed - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: passed - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent 377dcf2 commit 21e1ab2

File tree

8 files changed

+17
-16
lines changed

8 files changed

+17
-16
lines changed

lib/node_modules/@stdlib/lapack/base/dlaqr1/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ limitations under the License.
2020

2121
# dlaqr1
2222

23-
> Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
23+
> Compute the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
2424
2525
<section class="intro">
2626

lib/node_modules/@stdlib/lapack/base/dlaqr1/docs/repl.txt

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11

22
{{alias}}( order, N, H, LDH, sr1, si1, sr2, si2, V )
3-
Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a
4-
scalar multiple of the first column of `K` where:
5-
`K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
3+
Computes the scalar multiple of the first column of `K` where
4+
`K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where
5+
`Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the
6+
identity matrix.
67

78
Indexing is relative to the first index. To introduce an offset, use typed
89
array views.
@@ -56,10 +57,10 @@
5657

5758

5859
{{alias}}.ndarray( N, H, sh1, sh2, oh, sr1, si1, sr2, si2, V, sv, ov )
59-
Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a
60-
scalar multiple of the first column of `K` using alternative indexing
61-
semantics where:
62-
`K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
60+
Computes the scalar multiple of the first column of `K` using alternative
61+
indexing semantics where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3
62+
matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`,
63+
and `I` is the identity matrix.
6364

6465
It is expected that either `sr1 = sr2` and `si1 + si2 = 0` or si1 = si2 = 0`
6566
(i.e., they represent complex conjugate values).

lib/node_modules/@stdlib/lapack/base/dlaqr1/docs/types/index.d.ts

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ import { Layout } from '@stdlib/types/blas';
2727
*/
2828
interface Routine {
2929
/**
30-
* Given a 2-by-2 or a 3-by-3 matrix `H`, sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
30+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
3131
*
3232
* ## Notes
3333
*
@@ -58,7 +58,7 @@ interface Routine {
5858
( order: Layout, N: number, H: Float64Array, LDH: number, sr1: number, si1: number, sr2: number, si2: number, V: Float64Array ): Float64Array;
5959

6060
/**
61-
* Given a 2-by-2 or a 3-by-3 matrix `H`, sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)` using alternative indexing semantics.
61+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` using alternative indexing semantics and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
6262
*
6363
* ## Notes
6464
*
@@ -93,7 +93,7 @@ interface Routine {
9393
}
9494

9595
/**
96-
* Given a 2-by-2 or a 3-by-3 matrix `H`, sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
96+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
9797
*
9898
* ## Notes
9999
*

lib/node_modules/@stdlib/lapack/base/dlaqr1/lib/base.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ var abs = require( '@stdlib/math/base/special/fast/abs' );
2626
// MAIN //
2727

2828
/**
29-
* Given a 2-by-2 or a 3-by-3 matrix `H`, this function sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
29+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
3030
*
3131
* ## Notes
3232
*

lib/node_modules/@stdlib/lapack/base/dlaqr1/lib/dlaqr1.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ var base = require( './base.js' );
3131
// MAIN //
3232

3333
/**
34-
* Given a 2-by-2 or a 3-by-3 matrix `H`, this function sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
34+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
3535
*
3636
* ## Notes
3737
*

lib/node_modules/@stdlib/lapack/base/dlaqr1/lib/index.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919
'use strict';
2020

2121
/**
22-
* Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.
22+
* Compute the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
2323
*
2424
* ## Notes
2525
*

lib/node_modules/@stdlib/lapack/base/dlaqr1/lib/ndarray.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ var base = require( './base.js' );
2727
// MAIN //
2828

2929
/**
30-
* Given a 2-by-2 or a 3-by-3 matrix `H`, this function sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)` using alternative indexing semantics.
30+
* Computes the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` using alternative indexing semantics and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.
3131
*
3232
* ## Notes
3333
*

lib/node_modules/@stdlib/lapack/base/dlaqr1/package.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
{
22
"name": "@stdlib/lapack/base/dlaqr1",
33
"version": "0.0.0",
4-
"description": "Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a scalar multiple of the first column of `K` where `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`.",
4+
"description": "Compute the scalar multiple of the first column of `K` where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the identity matrix.",
55
"license": "Apache-2.0",
66
"author": {
77
"name": "The Stdlib Authors",

0 commit comments

Comments
 (0)