|
1 | 1 |
|
2 | 2 | {{alias}}( order, N, H, LDH, sr1, si1, sr2, si2, V )
|
3 |
| - Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a |
4 |
| - scalar multiple of the first column of `K` where: |
5 |
| - `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`. |
| 3 | + Computes the scalar multiple of the first column of `K` where |
| 4 | + `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 matrix `H` and where |
| 5 | + `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, and `I` is the |
| 6 | + identity matrix. |
6 | 7 |
|
7 | 8 | Indexing is relative to the first index. To introduce an offset, use typed
|
8 | 9 | array views.
|
|
56 | 57 |
|
57 | 58 |
|
58 | 59 | {{alias}}.ndarray( N, H, sh1, sh2, oh, sr1, si1, sr2, si2, V, sv, ov )
|
59 |
| - Given a 2-by-2 or a 3-by-3 matrix `H`, this LAPACK routine sets `V` to a |
60 |
| - scalar multiple of the first column of `K` using alternative indexing |
61 |
| - semantics where: |
62 |
| - `K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)`. |
| 60 | + Computes the scalar multiple of the first column of `K` using alternative |
| 61 | + indexing semantics where `K = (H - Z1)*(H - Z2)` for a 2-by-2 or a 3-by-3 |
| 62 | + matrix `H` and where `Z1 = z1*I`, `Z2 = z2*I`, `z1 = a + bi`, `z2 = c + di`, |
| 63 | + and `I` is the identity matrix. |
63 | 64 |
|
64 | 65 | It is expected that either `sr1 = sr2` and `si1 + si2 = 0` or si1 = si2 = 0`
|
65 | 66 | (i.e., they represent complex conjugate values).
|
|
0 commit comments