You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+7-7Lines changed: 7 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -66,23 +66,23 @@ The namespace contains the following statistical functions:
66
66
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
67
67
- <spanclass="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
68
68
- <spanclass="signature">[`nanmean( N, x, strideX )`][@stdlib/stats/base/nanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values.</span>
69
-
- <spanclass="signature">[`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
69
+
- <spanclass="signature">[`nanmeanors( N, x, strideX )`][@stdlib/stats/base/nanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
70
70
- <spanclass="signature">[`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
71
-
- <spanclass="signature">[`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
71
+
- <spanclass="signature">[`nanmeanwd( N, x, strideX )`][@stdlib/stats/base/nanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
72
72
- <spanclass="signature">[`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.</span>
73
73
- <spanclass="signature">[`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.</span>
74
74
- <spanclass="signature">[`nanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array according to a mask, ignoring `NaN` values.</span>
75
75
- <spanclass="signature">[`nanrangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanrange-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array via a callback function, ignoring `NaN` values.</span>
76
76
- <spanclass="signature">[`nanrange( N, x, strideX )`][@stdlib/stats/base/nanrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array, ignoring `NaN` values.</span>
77
-
- <spanclass="signature">[`nanstdev( N, correction, x, stride )`][@stdlib/stats/base/nanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values.</span>
77
+
- <spanclass="signature">[`nanstdev( N, correction, x, strideX )`][@stdlib/stats/base/nanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values.</span>
78
78
- <spanclass="signature">[`nanstdevch( N, correction, x, stride )`][@stdlib/stats/base/nanstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
79
-
- <spanclass="signature">[`nanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/nanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
79
+
- <spanclass="signature">[`nanstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/nanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
80
80
- <spanclass="signature">[`nanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/nanstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
81
81
- <spanclass="signature">[`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
82
-
- <spanclass="signature">[`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
83
-
- <spanclass="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values.</span>
82
+
- <spanclass="signature">[`nanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/nanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
83
+
- <spanclass="signature">[`nanvariance( N, correction, x, strideX )`][@stdlib/stats/base/nanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values.</span>
84
84
- <spanclass="signature">[`nanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
85
-
- <spanclass="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
85
+
- <spanclass="signature">[`nanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
86
86
- <spanclass="signature">[`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
87
87
- <spanclass="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
88
88
- <spanclass="signature">[`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/ndarray/README.md
+6Lines changed: 6 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -48,10 +48,12 @@ The namespace exposes the following APIs:
48
48
- <spanclass="signature">[`cumax( arrays )`][@stdlib/stats/base/ndarray/cumax]</span><spanclass="delimiter">: </span><spanclass="description">compute the cumulative maximum value of a one-dimensional ndarray.</span>
49
49
- <spanclass="signature">[`dcumax( arrays )`][@stdlib/stats/base/ndarray/dcumax]</span><spanclass="delimiter">: </span><spanclass="description">compute the cumulative maximum value of a one-dimensional double-precision floating-point ndarray.</span>
50
50
- <spanclass="signature">[`dmax( arrays )`][@stdlib/stats/base/ndarray/dmax]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional double-precision floating-point ndarray.</span>
51
+
- <spanclass="signature">[`dztest( arrays )`][@stdlib/stats/base/ndarray/dztest]</span><spanclass="delimiter">: </span><spanclass="description">compute a one-sample Z-test for a one-dimensional double-precision floating-point ndarray.</span>
51
52
- <spanclass="signature">[`maxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/max-by]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional ndarray via a callback function.</span>
52
53
- <spanclass="signature">[`max( arrays )`][@stdlib/stats/base/ndarray/max]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional ndarray.</span>
53
54
- <spanclass="signature">[`scumax( arrays )`][@stdlib/stats/base/ndarray/scumax]</span><spanclass="delimiter">: </span><spanclass="description">compute the cumulative maximum value of a one-dimensional single-precision floating-point ndarray.</span>
54
55
- <spanclass="signature">[`smax( arrays )`][@stdlib/stats/base/ndarray/smax]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional single-precision floating-point ndarray.</span>
56
+
- <spanclass="signature">[`sztest( arrays )`][@stdlib/stats/base/ndarray/sztest]</span><spanclass="delimiter">: </span><spanclass="description">compute a one-sample Z-test for a one-dimensional single-precision floating-point ndarray.</span>
0 commit comments