|
| 1 | +/** |
| 2 | +* @license Apache-2.0 |
| 3 | +* |
| 4 | +* Copyright (c) 2025 The Stdlib Authors. |
| 5 | +* |
| 6 | +* Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +* you may not use this file except in compliance with the License. |
| 8 | +* You may obtain a copy of the License at |
| 9 | +* |
| 10 | +* http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +* |
| 12 | +* Unless required by applicable law or agreed to in writing, software |
| 13 | +* distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +* See the License for the specific language governing permissions and |
| 16 | +* limitations under the License. |
| 17 | +*/ |
| 18 | + |
| 19 | +'use strict'; |
| 20 | + |
| 21 | +// MODULES // |
| 22 | + |
| 23 | +var tape = require( 'tape' ); |
| 24 | +var Float64Results = require( '@stdlib/stats/base/ztest/two-sample/results/float64' ); |
| 25 | +var isfinite = require( '@stdlib/math/base/assert/is-finite' ); |
| 26 | +var isnan = require( '@stdlib/math/base/assert/is-nan' ); |
| 27 | +var dfill = require( '@stdlib/blas/ext/base/dfill' ).ndarray; |
| 28 | +var normalFactory = require( '@stdlib/random/array/normal' ).factory; |
| 29 | +var PINF = require( '@stdlib/constants/float64/pinf' ); |
| 30 | +var NINF = require( '@stdlib/constants/float64/ninf' ); |
| 31 | +var dztest2 = require( './../lib/dztest2.js' ); |
| 32 | + |
| 33 | + |
| 34 | +// VARIABLES // |
| 35 | + |
| 36 | +var normal = normalFactory({ |
| 37 | + 'seed': 12345 |
| 38 | +}); |
| 39 | + |
| 40 | + |
| 41 | +// TESTS // |
| 42 | + |
| 43 | +tape( 'main export is a function', function test( t ) { |
| 44 | + t.ok( true, __filename ); |
| 45 | + t.strictEqual( typeof dztest2, 'function', 'main export is a function' ); |
| 46 | + t.end(); |
| 47 | +}); |
| 48 | + |
| 49 | +tape( 'the function performs a two-sample Z-test over strided arrays (alternative=two-sided)', function test( t ) { |
| 50 | + var results; |
| 51 | + var out; |
| 52 | + var x; |
| 53 | + var y; |
| 54 | + |
| 55 | + results = new Float64Results(); |
| 56 | + |
| 57 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 58 | + x = normal( 10000, 0.0, 1.0, { |
| 59 | + 'dtype': 'float64' |
| 60 | + }); |
| 61 | + y = normal( 10000, 0.0, 1.0, { |
| 62 | + 'dtype': 'float64' |
| 63 | + }); |
| 64 | + |
| 65 | + out = dztest2( x.length, y.length, 'two-sided', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 66 | + t.strictEqual( out, results, 'returns expected value' ); |
| 67 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 68 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 69 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 70 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 71 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 72 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 73 | + |
| 74 | + out = dztest2( x.length, y.length, 'two-sided', 0.1, 100.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 75 | + t.strictEqual( out, results, 'returns expected value' ); |
| 76 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 77 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 78 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 79 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 80 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 81 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 82 | + |
| 83 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 84 | + x = normal( 10000, 4.0, 1.0, { |
| 85 | + 'dtype': 'float64' |
| 86 | + }); |
| 87 | + y = normal( 10000, 2.0, 1.0, { |
| 88 | + 'dtype': 'float64' |
| 89 | + }); |
| 90 | + |
| 91 | + out = dztest2( x.length, y.length, 'two-sided', 0.1, 2.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 92 | + t.strictEqual( out, results, 'returns expected value' ); |
| 93 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 94 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 95 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 96 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 97 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 98 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 99 | + |
| 100 | + t.end(); |
| 101 | +}); |
| 102 | + |
| 103 | +tape( 'the function performs a two-sample Z-test over strided arrays (alternative=greater)', function test( t ) { |
| 104 | + var results; |
| 105 | + var out; |
| 106 | + var x; |
| 107 | + var y; |
| 108 | + |
| 109 | + results = new Float64Results(); |
| 110 | + |
| 111 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 112 | + x = normal( 10000, 0.0, 1.0, { |
| 113 | + 'dtype': 'float64' |
| 114 | + }); |
| 115 | + y = normal( 10000, 2.0, 1.0, { |
| 116 | + 'dtype': 'float64' |
| 117 | + }); |
| 118 | + |
| 119 | + out = dztest2( x.length, y.length, 'greater', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 120 | + t.strictEqual( out, results, 'returns expected value' ); |
| 121 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 122 | + t.strictEqual( out.alternative, 'greater', 'returns expected value' ); |
| 123 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 124 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 125 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 126 | + t.strictEqual( out.ci[ 1 ], PINF, 'returns expected value' ); |
| 127 | + |
| 128 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 129 | + x = normal( 10000, 0.0, 1.0, { |
| 130 | + 'dtype': 'float64' |
| 131 | + }); |
| 132 | + y = normal( 10000, 0.0, 1.0, { |
| 133 | + 'dtype': 'float64' |
| 134 | + }); |
| 135 | + |
| 136 | + out = dztest2( x.length, y.length, 'greater', 0.1, -1.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 137 | + t.strictEqual( out, results, 'returns expected value' ); |
| 138 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 139 | + t.strictEqual( out.alternative, 'greater', 'returns expected value' ); |
| 140 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 141 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 142 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 143 | + t.strictEqual( out.ci[ 1 ], PINF, 'returns expected value' ); |
| 144 | + |
| 145 | + t.end(); |
| 146 | +}); |
| 147 | + |
| 148 | +tape( 'the function performs a two-sample Z-test over strided arrays (alternative=less)', function test( t ) { |
| 149 | + var results; |
| 150 | + var out; |
| 151 | + var x; |
| 152 | + var y; |
| 153 | + |
| 154 | + results = new Float64Results(); |
| 155 | + |
| 156 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 157 | + x = normal( 10000, 2.0, 1.0, { |
| 158 | + 'dtype': 'float64' |
| 159 | + }); |
| 160 | + y = normal( 10000, 0.0, 1.0, { |
| 161 | + 'dtype': 'float64' |
| 162 | + }); |
| 163 | + |
| 164 | + out = dztest2( x.length, y.length, 'less', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 165 | + t.strictEqual( out, results, 'returns expected value' ); |
| 166 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 167 | + t.strictEqual( out.alternative, 'less', 'returns expected value' ); |
| 168 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 169 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 170 | + t.strictEqual( out.ci[ 0 ], NINF, 'returns expected value' ); |
| 171 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 172 | + |
| 173 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 174 | + x = normal( 10000, 0.0, 1.0, { |
| 175 | + 'dtype': 'float64' |
| 176 | + }); |
| 177 | + y = normal( 10000, 0.0, 1.0, { |
| 178 | + 'dtype': 'float64' |
| 179 | + }); |
| 180 | + |
| 181 | + out = dztest2( x.length, y.length, 'less', 0.1, 1.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 182 | + t.strictEqual( out, results, 'returns expected value' ); |
| 183 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 184 | + t.strictEqual( out.alternative, 'less', 'returns expected value' ); |
| 185 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 186 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 187 | + t.strictEqual( out.ci[ 0 ], NINF, 'returns expected value' ); |
| 188 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 189 | + |
| 190 | + t.end(); |
| 191 | +}); |
| 192 | + |
| 193 | +tape( 'if provided an `NX` or `NY` parameter less than or equal to `0`, the function returns `NaN` results', function test( t ) { |
| 194 | + var results; |
| 195 | + var out; |
| 196 | + var x; |
| 197 | + var y; |
| 198 | + |
| 199 | + results = new Float64Results(); |
| 200 | + x = normal( 10, 0.0, 1.0, { |
| 201 | + 'dtype': 'float64' |
| 202 | + }); |
| 203 | + y = normal( 10, 0.0, 1.0, { |
| 204 | + 'dtype': 'float64' |
| 205 | + }); |
| 206 | + |
| 207 | + out = dztest2( 0, y.length, 'two-sided', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 208 | + t.strictEqual( out, results, 'returns expected value' ); |
| 209 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 210 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 211 | + t.strictEqual( isnan( out.statistic ), true, 'returns expected value' ); |
| 212 | + t.strictEqual( isnan( out.pValue ), true, 'returns expected value' ); |
| 213 | + |
| 214 | + out = dztest2( -1, y.length, 'two-sided', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 215 | + t.strictEqual( out, results, 'returns expected value' ); |
| 216 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 217 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 218 | + t.strictEqual( isnan( out.statistic ), true, 'returns expected value' ); |
| 219 | + t.strictEqual( isnan( out.pValue ), true, 'returns expected value' ); |
| 220 | + |
| 221 | + out = dztest2( x.length, 0, 'two-sided', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 222 | + t.strictEqual( out, results, 'returns expected value' ); |
| 223 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 224 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 225 | + t.strictEqual( isnan( out.statistic ), true, 'returns expected value' ); |
| 226 | + t.strictEqual( isnan( out.pValue ), true, 'returns expected value' ); |
| 227 | + |
| 228 | + out = dztest2( x.length, -1, 'two-sided', 0.1, 0.0, 1.0, x, 1, 1.0, y, 1, results ); |
| 229 | + t.strictEqual( out, results, 'returns expected value' ); |
| 230 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 231 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 232 | + t.strictEqual( isnan( out.statistic ), true, 'returns expected value' ); |
| 233 | + t.strictEqual( isnan( out.pValue ), true, 'returns expected value' ); |
| 234 | + |
| 235 | + t.end(); |
| 236 | +}); |
| 237 | + |
| 238 | +tape( 'the function supports a stride parameter', function test( t ) { |
| 239 | + var results; |
| 240 | + var out; |
| 241 | + var x; |
| 242 | + var y; |
| 243 | + var N; |
| 244 | + |
| 245 | + N = 10000; |
| 246 | + results = new Float64Results(); |
| 247 | + |
| 248 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 249 | + x = normal( N*2, 0.0, 1.0, { |
| 250 | + 'dtype': 'float64' |
| 251 | + }); |
| 252 | + y = normal( N*2, 0.0, 1.0, { |
| 253 | + 'dtype': 'float64' |
| 254 | + }); |
| 255 | + |
| 256 | + dfill( N, NaN, x, 2, 1 ); |
| 257 | + dfill( N, NaN, y, 2, 1 ); |
| 258 | + |
| 259 | + out = dztest2( N, N, 'two-sided', 0.1, 0.0, 1.0, x, 2, 1.0, y, 2, results ); |
| 260 | + t.strictEqual( out, results, 'returns expected value' ); |
| 261 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 262 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 263 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 264 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 265 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 266 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 267 | + |
| 268 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 269 | + x = normal( N*2, 4.0, 1.0, { |
| 270 | + 'dtype': 'float64' |
| 271 | + }); |
| 272 | + y = normal( N*2, 2.0, 1.0, { |
| 273 | + 'dtype': 'float64' |
| 274 | + }); |
| 275 | + |
| 276 | + dfill( N, NaN, x, 2, 1 ); |
| 277 | + dfill( N, NaN, y, 2, 1 ); |
| 278 | + |
| 279 | + out = dztest2( N, N, 'two-sided', 0.1, 10.0, 1.0, x, 2, 1.0, y, 2, results ); |
| 280 | + t.strictEqual( out, results, 'returns expected value' ); |
| 281 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 282 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 283 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 284 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 285 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 286 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 287 | + |
| 288 | + t.end(); |
| 289 | +}); |
| 290 | + |
| 291 | +tape( 'the function supports a negative stride parameter', function test( t ) { |
| 292 | + var results; |
| 293 | + var out; |
| 294 | + var x; |
| 295 | + var y; |
| 296 | + var N; |
| 297 | + |
| 298 | + N = 10000; |
| 299 | + results = new Float64Results(); |
| 300 | + |
| 301 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 302 | + x = normal( N*2, 0.0, 1.0, { |
| 303 | + 'dtype': 'float64' |
| 304 | + }); |
| 305 | + y = normal( N*2, 0.0, 1.0, { |
| 306 | + 'dtype': 'float64' |
| 307 | + }); |
| 308 | + |
| 309 | + dfill( N, NaN, x, 2, 1 ); |
| 310 | + dfill( N, NaN, y, 2, 1 ); |
| 311 | + |
| 312 | + out = dztest2( N, N, 'two-sided', 0.1, 0.0, 1.0, x, -2, 1.0, y, -2, results ); |
| 313 | + t.strictEqual( out, results, 'returns expected value' ); |
| 314 | + t.strictEqual( out.rejected, false, 'returns expected value' ); |
| 315 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 316 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 317 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 318 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 319 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 320 | + |
| 321 | + // Generate arrays with a sufficiently large sample size to effectively guarantee expected results: |
| 322 | + x = normal( N*2, 100.0, 1.0, { |
| 323 | + 'dtype': 'float64' |
| 324 | + }); |
| 325 | + y = normal( N*2, 100.0, 1.0, { |
| 326 | + 'dtype': 'float64' |
| 327 | + }); |
| 328 | + |
| 329 | + dfill( N, NaN, x, 2, 1 ); |
| 330 | + dfill( N, NaN, y, 2, 1 ); |
| 331 | + |
| 332 | + out = dztest2( N, N, 'two-sided', 0.1, 0.0, 1.0, x, -2, 1.0, y, -2, results ); |
| 333 | + t.strictEqual( out, results, 'returns expected value' ); |
| 334 | + t.strictEqual( out.rejected, true, 'returns expected value' ); |
| 335 | + t.strictEqual( out.alternative, 'two-sided', 'returns expected value' ); |
| 336 | + t.strictEqual( isnan( out.statistic ), false, 'returns expected value' ); |
| 337 | + t.strictEqual( isnan( out.pValue ), false, 'returns expected value' ); |
| 338 | + t.strictEqual( isfinite( out.ci[ 0 ] ), true, 'returns expected value' ); |
| 339 | + t.strictEqual( isfinite( out.ci[ 1 ] ), true, 'returns expected value' ); |
| 340 | + |
| 341 | + t.end(); |
| 342 | +}); |
0 commit comments