You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/help/data/data.csv
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -104,7 +104,7 @@ base.acot,"\nbase.acot( x )\n Computes the inverse cotangent of a double-prec
104
104
base.acotd,"\nbase.acotd( x )\n Computes the arccotangent (in degrees) of a double-precision floating-point\n number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Arccotangent (in degrees).\n\n Examples\n --------\n > var y = base.acotd( 0.0 )\n 90.0\n > y = base.acotd( PI/6.0 )\n ~62.36\n > y = base.acotd( NaN )\n NaN\n\n See Also\n --------\n base.acot, base.acoth, base.atand, base.cotd\n"
105
105
base.acotf,"\nbase.acotf( x )\n Computes the inverse cotangent of a single-precision floating-point number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse cotangent (in radians).\n\n Examples\n --------\n > var y = base.acotf( 2.0 )\n ~0.4636\n > y = base.acotf( 0.0 )\n ~1.5708\n > y = base.acotf( 0.5 )\n ~1.1071\n > y = base.acotf( 1.0 )\n ~0.7854\n > y = base.acotf( NaN )\n NaN\n\n See Also\n --------\n base.acot, base.acoth, base.atanf\n"
106
106
base.acoth,"\nbase.acoth( x )\n Computes the inverse hyperbolic cotangent of a double-precision floating-\n point number.\n\n The domain of the inverse hyperbolic cotangent is the union of the intervals\n (-inf,-1] and [1,inf).\n\n If provided a value on the open interval (-1,1), the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse hyperbolic cotangent.\n\n Examples\n --------\n > var y = base.acoth( 2.0 )\n ~0.5493\n > y = base.acoth( 0.0 )\n NaN\n > y = base.acoth( 0.5 )\n NaN\n > y = base.acoth( 1.0 )\n Infinity\n > y = base.acoth( NaN )\n NaN\n\n See Also\n --------\n base.acosh, base.acot, base.asinh, base.atanh\n"
107
-
base.acovercos,"\nbase.acovercos( x )\n Computes the inverse coversed cosine.\n\n The inverse coversed cosine is defined as `asin(1+x)`.\n\n If `x < -2`, `x > 0`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse coversed cosine.\n\n Examples\n --------\n > var y = base.acovercos( -1.5 )\n ~-0.5236\n > y = base.acovercos( -0.0 )\n ~1.5708\n\n See Also\n --------\n base.acoversin, base.avercos, base.covercos, base.vercos\n"
107
+
base.acovercos,"\nbase.acovercos( x )\n Computes the inverse coversed cosine.\n\n The inverse coversed cosine is defined as `asin(x-1)`.\n\n If `x < 0`, `x > 2`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse coversed cosine.\n\n Examples\n --------\n > var y = base.acovercos( 1.5 )\n ~0.5236\n > y = base.acovercos( -0.0 )\n ~-1.5708\n\n See Also\n --------\n base.acoversin, base.avercos, base.covercos, base.vercos\n"
108
108
base.acoversin,"\nbase.acoversin( x )\n Computes the inverse coversed sine.\n\n The inverse coversed sine is defined as `asin(1-x)`.\n\n If `x < 0`, `x > 2`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse coversed sine.\n\n Examples\n --------\n > var y = base.acoversin( 1.5 )\n ~-0.5236\n > y = base.acoversin( 0.0 )\n ~1.5708\n\n See Also\n --------\n base.acovercos, base.aversin, base.coversin, base.versin\n"
109
109
base.acsc,"\nbase.acsc( x )\n Computes the arccosecant of a number.\n\n If `|x| < 1`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Arccosecant (in radians).\n\n Examples\n --------\n > var y = base.acsc( 1.0 )\n ~1.57\n > y = base.acsc( PI )\n ~0.32\n > y = base.acsc( -PI )\n ~-0.32\n > y = base.acsc( NaN )\n NaN\n\n See Also\n --------\n base.acot, base.acsch, base.asec, base.asin, base.csc\n"
110
110
base.acscd,"\nbase.acscd( x )\n Computes the arccosecant of (in degrees) a double-precision floating-point\n number.\n\n If `x` does not satisy `x >= 1` or `x <= -1`, the function returns NaN.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Arccosecant (in degrees).\n\n Examples\n --------\n > var y = base.acscd( 0.0 )\n NaN\n > y = base.acscd( PI/6.0 )\n NaN\n > y = base.acscd( 1 )\n 90.0\n > y = base.acscd( NaN )\n NaN\n\n See Also\n --------\n base.acsc, base.acsch, base.asecd, base.asind, base.cscd\n"
0 commit comments