You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/ext/base/README.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -86,12 +86,12 @@ var ns = extblas;
86
86
- <spanclass="signature">[`dssumpw( N, x, strideX )`][@stdlib/blas/ext/base/dssumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation and returning an extended precision result.</span>
87
87
- <spanclass="signature">[`dsum( N, x, strideX )`][@stdlib/blas/ext/base/dsum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements.</span>
88
88
- <spanclass="signature">[`dsumkbn( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.</span>
89
-
- <spanclass="signature">[`dsumkbn2( N, x, stride )`][@stdlib/blas/ext/base/dsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
89
+
- <spanclass="signature">[`dsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
90
90
- <spanclass="signature">[`dsumors( N, x, stride )`][@stdlib/blas/ext/base/dsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.</span>
91
91
- <spanclass="signature">[`dsumpw( N, x, stride )`][@stdlib/blas/ext/base/dsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using pairwise summation.</span>
92
92
- <spanclass="signature">[`gapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapx]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each element in a strided array.</span>
93
93
- <spanclass="signature">[`gapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum.</span>
94
-
- <spanclass="signature">[`gapxsumkbn( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
94
+
- <spanclass="signature">[`gapxsumkbn( N, alpha, x, strideX )`][@stdlib/blas/ext/base/gapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
95
95
- <spanclass="signature">[`gapxsumkbn2( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.</span>
96
96
- <spanclass="signature">[`gapxsumors( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsumors]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum using ordinary recursive summation.</span>
97
97
- <spanclass="signature">[`gapxsumpw( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsumpw]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum using pairwise summation.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+5-5Lines changed: 5 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -67,8 +67,8 @@ The namespace contains the following statistical functions:
67
67
- <spanclass="signature">[`dcuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcuminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.</span>
68
68
- <spanclass="signature">[`dmax( N, x, strideX )`][@stdlib/stats/base/dmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a double-precision floating-point strided array.</span>
69
69
- <spanclass="signature">[`dmaxabs( N, x, strideX )`][@stdlib/stats/base/dmaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a double-precision floating-point strided array.</span>
70
-
- <spanclass="signature">[`dmaxabssorted( N, x, stride )`][@stdlib/stats/base/dmaxabssorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a sorted double-precision floating-point strided array.</span>
71
-
- <spanclass="signature">[`dmaxsorted( N, x, stride )`][@stdlib/stats/base/dmaxsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a sorted double-precision floating-point strided array.</span>
70
+
- <spanclass="signature">[`dmaxabssorted( N, x, strideX )`][@stdlib/stats/base/dmaxabssorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a sorted double-precision floating-point strided array.</span>
71
+
- <spanclass="signature">[`dmaxsorted( N, x, strideX )`][@stdlib/stats/base/dmaxsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a sorted double-precision floating-point strided array.</span>
72
72
- <spanclass="signature">[`dmean( N, x, stride )`][@stdlib/stats/base/dmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
73
73
- <spanclass="signature">[`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
74
74
- <spanclass="signature">[`dmeankbn2( N, x, stride )`][@stdlib/stats/base/dmeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
@@ -82,11 +82,11 @@ The namespace contains the following statistical functions:
82
82
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
83
83
- <spanclass="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
84
84
- <spanclass="signature">[`dmeanwd( N, x, stride )`][@stdlib/stats/base/dmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
85
-
- <spanclass="signature">[`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
85
+
- <spanclass="signature">[`dmediansorted( N, x, strideX )`][@stdlib/stats/base/dmediansorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
86
86
- <spanclass="signature">[`dmidrange( N, x, strideX )`][@stdlib/stats/base/dmidrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mid-range of a double-precision floating-point strided array.</span>
87
87
- <spanclass="signature">[`dmin( N, x, strideX )`][@stdlib/stats/base/dmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array.</span>
88
88
- <spanclass="signature">[`dminabs( N, x, strideX )`][@stdlib/stats/base/dminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum absolute value of a double-precision floating-point strided array.</span>
89
-
- <spanclass="signature">[`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a sorted double-precision floating-point strided array.</span>
89
+
- <spanclass="signature">[`dminsorted( N, x, strideX )`][@stdlib/stats/base/dminsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a sorted double-precision floating-point strided array.</span>
90
90
- <spanclass="signature">[`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a double-precision floating-point strided array according to a mask.</span>
91
91
- <spanclass="signature">[`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array according to a mask.</span>
92
92
- <spanclass="signature">[`dmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array according to a mask.</span>
@@ -206,7 +206,7 @@ The namespace contains the following statistical functions:
206
206
- <spanclass="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
207
207
- <spanclass="signature">[`smax( N, x, strideX )`][@stdlib/stats/base/smax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a single-precision floating-point strided array.</span>
208
208
- <spanclass="signature">[`smaxabs( N, x, strideX )`][@stdlib/stats/base/smaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a single-precision floating-point strided array.</span>
209
-
- <spanclass="signature">[`smaxabssorted( N, x, stride )`][@stdlib/stats/base/smaxabssorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a sorted single-precision floating-point strided array.</span>
209
+
- <spanclass="signature">[`smaxabssorted( N, x, strideX )`][@stdlib/stats/base/smaxabssorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a sorted single-precision floating-point strided array.</span>
210
210
- <spanclass="signature">[`smaxsorted( N, x, stride )`][@stdlib/stats/base/smaxsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a sorted single-precision floating-point strided array.</span>
211
211
- <spanclass="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
212
212
- <spanclass="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
0 commit comments