Skip to content

Commit 3dc7e61

Browse files
committed
docs: update docs
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: passed - task: lint_repl_help status: passed - task: lint_javascript_src status: passed - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: passed - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: passed - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent ba24b53 commit 3dc7e61

File tree

10 files changed

+101
-111
lines changed

10 files changed

+101
-111
lines changed

lib/node_modules/@stdlib/lapack/base/dgttrf/README.md

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ limitations under the License.
2020

2121
# dgttrf
2222

23-
> Compute an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges.
23+
> Compute an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
2424
2525
<section class="usage">
2626

@@ -32,7 +32,7 @@ var dgttrf = require( '@stdlib/lapack/base/dgttrf' );
3232

3333
#### dgttrf( N, DL, D, DU, DU2, IPIV )
3434

35-
Computes an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges.
35+
Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
3636

3737
```javascript
3838
var Float64Array = require( '@stdlib/array/float64' );
@@ -46,19 +46,19 @@ var IPIV = new Int32Array( 3 );
4646

4747
dgttrf( 3, DL, D, DU, DU2, IPIV );
4848
// DL => <Float64Array>[ 0.5, 0.4 ]
49-
// D => <Float64Array>[ 2, 2.5, 0.6 ]
50-
// DU => <Float64Array>[ 1, 1 ]
51-
// DU2 => <Float64Array>[ 0 ]
49+
// D => <Float64Array>[ 2.0, 2.5, 0.6 ]
50+
// DU => <Float64Array>[ 1.0, 1.0 ]
51+
// DU2 => <Float64Array>[ 0.0 ]
5252
// IPIV => <Int32Array>[ 0, 1, 2 ]
5353
```
5454

5555
The function has the following parameters:
5656

5757
- **N**: order of matrix `A`.
58-
- **DL**: the sub diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. On exit, DL is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
59-
- **D**: the diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. On exit, D is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
60-
- **DU**: the super diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. On exit, DU is overwritten by the elements of the first super-diagonal of `U`.
61-
- **DU2**: On exit, DU2 is overwritten by the elements of the second super-diagonal of `U` as a [`Float64Array`][mdn-float64array].
58+
- **DL**: the sub diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. DL is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
59+
- **D**: the diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. D is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
60+
- **DU**: the super diagonal elements of `A` as a [`Float64Array`][mdn-float64array]. DU is overwritten by the elements of the first super-diagonal of `U`.
61+
- **DU2**: DU2 is overwritten by the elements of the second super-diagonal of `U` as a [`Float64Array`][mdn-float64array].
6262
- **IPIV**: vector of pivot indices as a [`Int32Array`][mdn-int32array].
6363

6464
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
@@ -84,18 +84,18 @@ var DU2 = new Float64Array( DU20.buffer, DU20.BYTES_PER_ELEMENT*1 ); // start at
8484
var IPIV = new Int32Array( IPIV0.buffer, IPIV0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
8585

8686
dgttrf( 3, DL, D, DU, DU2, IPIV );
87-
// DL0 => <Float64Array>[ 0, 0.5, 0.4 ]
88-
// D0 => <Float64Array>[ 0, 2, 2.5, 0.6 ]
89-
// DU0 => <Float64Array>[ 0, 1, 1 ]
90-
// DU20 => <Float64Array>[ 0, 0 ]
87+
// DL0 => <Float64Array>[ 0.0, 0.5, 0.4 ]
88+
// D0 => <Float64Array>[ 0.0, 2.0, 2.5, 0.6 ]
89+
// DU0 => <Float64Array>[ 0.0, 1.0, 1.0 ]
90+
// DU20 => <Float64Array>[ 0.0, 0.0 ]
9191
// IPIV0 => <Int32Array>[ 0, 0, 1, 2 ]
9292
```
9393

9494
<!-- lint disable maximum-heading-length -->
9595

9696
#### dgttrf.ndarray( N, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi )
9797

98-
Computes an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics.
98+
Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics.
9999

100100
```javascript
101101
var Float64Array = require( '@stdlib/array/float64' );
@@ -105,14 +105,14 @@ var dgttrf = require( '@stdlib/lapack/base/dgttrf' );
105105
var DL = new Float64Array( [ 1.0, 1.0 ] );
106106
var D = new Float64Array( [ 2.0, 3.0, 1.0 ] );
107107
var DU = new Float64Array( [ 1.0, 1.0 ] );
108-
var DU2 = new Float64Array( 1 );
109-
var IPIV = new Int32Array( 3 );
108+
var DU2 = new Float64Array( [ 0.0 ] );
109+
var IPIV = new Int32Array( [ 0, 0, 0 ] );
110110

111111
dgttrf.ndarray( 3, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 );
112112
// DL => <Float64Array>[ 0.5, 0.4 ]
113-
// D => <Float64Array>[ 2, 2.5, 0.6 ]
114-
// DU => <Float64Array>[ 1, 1 ]
115-
// DU2 => <Float64Array>[ 0 ]
113+
// D => <Float64Array>[ 2.0, 2.5, 0.6 ]
114+
// DU => <Float64Array>[ 1.0, 1.0 ]
115+
// DU2 => <Float64Array>[ 0.0 ]
116116
// IPIV => <Int32Array>[ 0, 1, 2 ]
117117
```
118118

@@ -140,8 +140,8 @@ var Int32Array = require( '@stdlib/array/int32' );
140140
var DL = new Float64Array( [ 0.0, 1.0, 1.0 ] );
141141
var D = new Float64Array( [ 0.0, 2.0, 3.0, 1.0 ] );
142142
var DU = new Float64Array( [ 0.0, 1.0, 1.0 ] );
143-
var DU2 = new Float64Array( 2 );
144-
var IPIV = new Int32Array( 4 );
143+
var DU2 = new Float64Array( [ 0.0, 0.0 ] );
144+
var IPIV = new Int32Array( [ 0, 0, 0, 0 ] );
145145

146146
dgttrf.ndarray( 3, DL, 1, 1, D, 1, 1, DU, 1, 1, DU2, 1, 1, IPIV, 1, 1 );
147147
// DL => <Float64Array>[ 0.0, 0.5, 0.4 ]
@@ -159,12 +159,11 @@ dgttrf.ndarray( 3, DL, 1, 1, D, 1, 1, DU, 1, 1, DU2, 1, 1, IPIV, 1, 1 );
159159

160160
## Notes
161161

162-
- Both functions mutate the input arrays `DL`, `D`, `DU`, `DU2` and `IPIV`.
162+
- Both functions mutate the input arrays `DL`, `D`, `DU`, `DU2`, and `IPIV`.
163163

164164
- Both functions return a status code indicating success or failure. A status code indicates the following conditions:
165165

166166
- `0`: factorization was successful.
167-
- `<0`: the k-th argument had an illegal value, where `-k` equals the status code value.
168167
- `>0`: `U( k, k )` is exactly zero the factorization has been completed, but the factor `U` is exactly singular, and division by zero will occur if it is used to solve a system of equations, where `k` equals the status code value.
169168

170169
- `dgttrf()` corresponds to the [LAPACK][LAPACK] routine [`dgttrf`][lapack-dgttrf].

lib/node_modules/@stdlib/lapack/base/dgttrf/docs/repl.txt

Lines changed: 16 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11

22
{{alias}}( N, DL, D, DU, DU2, IPIV )
3-
Computes an `LU` factorization of a real tri diagonal matrix `A` using
3+
Computes an `LU` factorization of a real tridiagonal matrix `A` using
44
elimination with partial pivoting and row interchanges.
55

66
Indexing is relative to the first index. To introduce an offset, use typed
@@ -14,21 +14,19 @@
1414
Order of matrix `A`.
1515

1616
DL: Float64Array
17-
Sub diagonal elements of A. On exit, DL is overwritten by the
18-
multipliers that define the matrix L from the LU factorization of A.
17+
Sub diagonal elements of A. DL is overwritten by the multipliers
18+
that define the matrix L from the LU factorization of A.
1919

2020
D: Float64Array
21-
Diagonal elements of A. On exit, D is overwritten by the diagonal
22-
elements of the upper triangular matrix U from the LU factorization
23-
of A.
21+
Diagonal elements of A. D is overwritten by the diagonal elements
22+
of the upper triangular matrix U from the LU factorization of A.
2423

2524
DU: Float64Array
26-
Super diagonal elements of A. On exit, DU is overwritten by the
27-
elements of the first super-diagonal of U.
25+
Super diagonal elements of A. DU is overwritten by the elements of
26+
the first super-diagonal of U.
2827

2928
DU2: Float64Array
30-
On exit, DU2 is overwritten by the elements of the second
31-
super-diagonal of U.
29+
DU2 is overwritten by the elements of the second super-diagonal of U.
3230

3331
IPIV: Int32Array
3432
Array of pivot indices.
@@ -39,8 +37,6 @@
3937
Status code. The status code indicates the following conditions:
4038

4139
- if equal to zero, then the factorization was successful.
42-
- if less than zero, then the k-th argument had an illegal value, where
43-
`k = -info`.
4440
- if greater than zero, then U( k, k ) is exactly zero the factorization
4541
has been completed, but the factor U is exactly singular, and division
4642
by zero will occur if it is used to solve a system of equations,
@@ -92,7 +88,7 @@
9288

9389

9490
{{alias}}.ndarray( N,DL,sdl,odl,D,sd,od,DU,sdu,odu,DU2,sdu2,odu2,IPIV,si,oi )
95-
Computes an `LU` factorization of a real tri diagonal matrix `A` using
91+
Computes an `LU` factorization of a real tridiagonal matrix `A` using
9692
elimination with partial pivoting and row interchanges and alternative
9793
indexing semantics.
9894

@@ -108,8 +104,8 @@
108104
Order of matrix `A`.
109105

110106
DL: Float64Array
111-
Sub diagonal elements of A. On exit, DL is overwritten by the
112-
multipliers that define the matrix L from the LU factorization of A.
107+
Sub diagonal elements of A. DL is overwritten by the multipliers that
108+
define the matrix L from the LU factorization of A.
113109

114110
sdl: integer
115111
Stride length for `DL`.
@@ -118,9 +114,8 @@
118114
Starting index for `DL`.
119115

120116
D: Float64Array
121-
Diagonal elements of A. On exit, D is overwritten by the diagonal
122-
elements of the upper triangular matrix U from the LU factorization
123-
of A.
117+
Diagonal elements of A. D is overwritten by the diagonal elements of the
118+
upper triangular matrix U from the LU factorization of A.
124119

125120
sd: integer
126121
Stride length for `D`.
@@ -129,8 +124,8 @@
129124
Starting index for `D`.
130125

131126
DU: Float64Array
132-
Super diagonal elements of A. On exit, DU is overwritten by the
133-
elements of the first super-diagonal of U.
127+
Super diagonal elements of A. DU is overwritten by the elements of the
128+
first super-diagonal of U.
134129

135130
sdu: integer
136131
Stride length for `DU`.
@@ -139,8 +134,7 @@
139134
Starting index for `DU2`.
140135

141136
DU2: Float64Array
142-
On exit, DU2 is overwritten by the elements of the second
143-
super-diagonal of U.
137+
DU2 is overwritten by the elements of the second super-diagonal of U.
144138

145139
sdu2: integer
146140
Stride length for `DU2`.
@@ -163,8 +157,6 @@
163157
Status code. The status code indicates the following conditions:
164158

165159
- if equal to zero, then the factorization was successful.
166-
- if less than zero, then the k-th argument had an illegal value, where
167-
`k = -info`.
168160
- if greater than zero, then U( k, k ) is exactly zero the factorization
169161
has been completed, but the factor U is exactly singular, and division
170162
by zero will occur if it is used to solve a system of equations,

lib/node_modules/@stdlib/lapack/base/dgttrf/docs/types/index.d.ts

Lines changed: 30 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,6 @@
2626
* The status code indicates the following conditions:
2727
*
2828
* - if equal to zero, then the factorization was successful.
29-
* - if less than zero, then the k-th argument had an illegal value, where `k = -StatusCode`.
3029
* - if greater than zero, then U( k, k ) is exactly zero the factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations, where `k = StatusCode`.
3130
*/
3231
type StatusCode = number;
@@ -36,15 +35,15 @@ type StatusCode = number;
3635
*/
3736
interface Routine {
3837
/**
39-
* Computes an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges.
38+
* Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
4039
*
4140
* ## Notes
4241
*
43-
* - On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
44-
* - On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
45-
* - On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
46-
* - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
47-
* - On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
42+
* - `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
43+
* - `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
44+
* - `DU` is overwritten by the elements of the first super-diagonal of `U`.
45+
* - `DU2` is overwritten by the elements of the second super-diagonal of `U`.
46+
* - for `0 <= i < n`, row `i` of the matrix was interchanged with row `IPIV(i)`. `IPIV(i)` will always be either `i` or `i+1`; `IPIV(i) = i` indicates a row interchange was not required.
4847
*
4948
* @param N - order of matrix `A`
5049
* @param DL - sub diagonal elements of `A`
@@ -74,32 +73,32 @@ interface Routine {
7473
( N: number, DL: Float64Array, D: Float64Array, DU: Float64Array, DU2: Float64Array, IPIV: Int32Array ): StatusCode;
7574

7675
/**
77-
* Computes an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics.
76+
* Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics.
7877
*
7978
* ## Notes
8079
*
81-
* - On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
82-
* - On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
83-
* - On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
84-
* - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
85-
* - On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
80+
* - `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
81+
* - `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
82+
* - `DU` is overwritten by the elements of the first super-diagonal of `U`.
83+
* - `DU2` is overwritten by the elements of the second super-diagonal of `U`.
84+
* - for `0 <= i < n`, row `i` of the matrix was interchanged with row `IPIV(i)`. `IPIV(i)` will always be either `i` or `i+1`; `IPIV(i) = i` indicates a row interchange was not required.
8685
*
8786
* @param N - order of matrix `A`
8887
* @param DL - sub diagonal elements of `A`
89-
* @param sdl - stride length for `DL`
90-
* @param odl - starting index of `DL`
88+
* @param strideDL - stride length for `DL`
89+
* @param offsetDL - starting index of `DL`
9190
* @param D - diagonal elements of `A`
92-
* @param sd - stride length for `D`
93-
* @param od - starting index of `D`
91+
* @param strideD - stride length for `D`
92+
* @param offsetD - starting index of `D`
9493
* @param DU - super diagonal elements of `A`
95-
* @param sdu - stride length for `DU`
96-
* @param odu - starting index of `DU`
94+
* @param strideDU - stride length for `DU`
95+
* @param offsetDU - starting index of `DU`
9796
* @param DU2 - vector to store the second super diagonal of `U`
98-
* @param sdu2 - stride length for `DU2`
99-
* @param odu2 - starting index of `DU2`
97+
* @param strideDU2 - stride length for `DU2`
98+
* @param offsetDU2 - starting index of `DU2`
10099
* @param IPIV - vector of pivot indices
101-
* @param si - stride length for `IPIV`
102-
* @param oi - starting index of `IPIV`
100+
* @param strideIPIV - stride length for `IPIV`
101+
* @param offsetIPIV - starting index of `IPIV`
103102
* @returns status code
104103
*
105104
* @example
@@ -116,25 +115,25 @@ interface Routine {
116115
* // DU2 => <Float64Array>[ 0 ]
117116
* // IPIV => <Int32Array>[ 0, 1, 2 ]
118117
*/
119-
ndarray( N: number, DL: Float64Array, sdl: number, odl: number, D: Float64Array, sd: number, od: number, DU: Float64Array, sdu: number, odu: number, DU2: Float64Array, sdu2: number, odu2: number, IPIV: Int32Array, si: number, oi: number ): StatusCode;
118+
ndarray( N: number, DL: Float64Array, strideDL: number, offsetDL: number, D: Float64Array, strideD: number, offsetD: number, DU: Float64Array, strideDU: number, offsetDU: number, DU2: Float64Array, strideDU2: number, offsetDU2: number, IPIV: Int32Array, strideIPIV: number, offsetIPIV: number ): StatusCode;
120119
}
121120

122121
/**
123-
* LAPACK routine to compute an `LU` factorization of a real tri diagonal matrix `A` using elimination with partial pivoting and row interchanges.
122+
* LAPACK routine to compute an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
124123
*
125124
* ## Notes
126125
*
127-
* - On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
128-
* - On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
129-
* - On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
130-
* - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
131-
* - On exit, for 0 <= i < n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
126+
* - `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
127+
* - `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
128+
* - `DU` is overwritten by the elements of the first super-diagonal of `U`.
129+
* - `DU2` is overwritten by the elements of the second super-diagonal of `U`.
130+
* - for `0 <= i < n`, row `i` of the matrix was interchanged with row `IPIV(i)`. `IPIV(i)` will always be either `i` or `i+1`; `IPIV(i) = i` indicates a row interchange was not required.
132131
*
133132
* @param N - order of matrix `A`
134133
* @param DL - sub diagonal elements of `A`
135134
* @param D - diagonal elements of `A`
136135
* @param DU - super diagonal elements of `A`
137-
* @param DU2 - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`
136+
* @param DU2 - `DU2` is overwritten by the elements of the second super-diagonal of `U`
138137
* @param IPIV - vector of pivot indices
139138
* @returns status code
140139
*

0 commit comments

Comments
 (0)