|
| 1 | +/** |
| 2 | +* @license Apache-2.0 |
| 3 | +* |
| 4 | +* Copyright (c) 2025 The Stdlib Authors. |
| 5 | +* |
| 6 | +* Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +* you may not use this file except in compliance with the License. |
| 8 | +* You may obtain a copy of the License at |
| 9 | +* |
| 10 | +* http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +* |
| 12 | +* Unless required by applicable law or agreed to in writing, software |
| 13 | +* distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +* See the License for the specific language governing permissions and |
| 16 | +* limitations under the License. |
| 17 | +*/ |
| 18 | + |
| 19 | +/* eslint-disable max-depth, max-len */ |
| 20 | + |
| 21 | +'use strict'; |
| 22 | + |
| 23 | +// MODULES // |
| 24 | + |
| 25 | +var copyIndexed = require( '@stdlib/array/base/copy-indexed' ); |
| 26 | +var incrementOffsets = require( './increment_offsets.js' ); |
| 27 | +var setViewOffsets = require( './set_view_offsets.js' ); |
| 28 | +var offsets = require( './offsets.js' ); |
| 29 | + |
| 30 | + |
| 31 | +// MAIN // |
| 32 | + |
| 33 | +/** |
| 34 | +* Applies a one-dimensional strided array function to a list of specified dimensions in an input ndarray. |
| 35 | +* |
| 36 | +* @private |
| 37 | +* @param {Function} fcn - wrapper for a one-dimensional strided array reduction function |
| 38 | +* @param {Array<Object>} arrays - ndarrays |
| 39 | +* @param {Array<Object>} views - initialized ndarray-like objects representing sub-array views |
| 40 | +* @param {NonNegativeIntegerArray} shape - loop dimensions |
| 41 | +* @param {IntegerArray} stridesX - loop dimension strides for the input ndarray |
| 42 | +* @param {boolean} isRowMajor - boolean indicating if provided arrays are in row-major order |
| 43 | +* @param {Object} strategyX - strategy for marshaling data to and from an input ndarray view |
| 44 | +* @param {Options} opts - function options |
| 45 | +* @returns {void} |
| 46 | +* |
| 47 | +* @example |
| 48 | +* var ndarray2array = require( '@stdlib/ndarray/base/to-array' ); |
| 49 | +* var getStride = require( '@stdlib/ndarray/base/stride' ); |
| 50 | +* var getOffset = require( '@stdlib/ndarray/base/offset' ); |
| 51 | +* var getData = require( '@stdlib/ndarray/base/data-buffer' ); |
| 52 | +* var numelDimension = require( '@stdlib/ndarray/base/numel-dimension' ); |
| 53 | +* var ndarraylike2scalar = require( '@stdlib/ndarray/base/ndarraylike2scalar' ); |
| 54 | +* var gsorthp = require( '@stdlib/blas/ext/base/gsorthp' ).ndarray; |
| 55 | +* |
| 56 | +* function wrapper( arrays ) { |
| 57 | +* var x = arrays[ 0 ]; |
| 58 | +* var o = arrays[ 1 ]; |
| 59 | +* return gsorthp( numelDimension( x, 0 ), ndarraylike2scalar( o ), getData( x ), getStride( x, 0 ), getOffset( x ) ); |
| 60 | +* } |
| 61 | +* |
| 62 | +* // Create data buffers: |
| 63 | +* var xbuf = [ 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ]; |
| 64 | +* |
| 65 | +* // Define the array shapes: |
| 66 | +* var xsh = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2 ]; |
| 67 | +* |
| 68 | +* // Define the array strides: |
| 69 | +* var sx = [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 4, 2, 1 ]; |
| 70 | +* |
| 71 | +* // Define the index offsets: |
| 72 | +* var ox = 0; |
| 73 | +* |
| 74 | +* // Create an input ndarray-like object: |
| 75 | +* var x = { |
| 76 | +* 'dtype': 'generic', |
| 77 | +* 'data': xbuf, |
| 78 | +* 'shape': xsh, |
| 79 | +* 'strides': sx, |
| 80 | +* 'offset': ox, |
| 81 | +* 'order': 'row-major' |
| 82 | +* }; |
| 83 | +* |
| 84 | +* // Create an ndarray-like object for the sort order: |
| 85 | +* var sortOrder = { |
| 86 | +* 'dtype': 'generic', |
| 87 | +* 'data': [ 1.0 ], |
| 88 | +* 'shape': [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3 ], |
| 89 | +* 'strides': [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], |
| 90 | +* 'offset': 0, |
| 91 | +* 'order': 'row-major' |
| 92 | +* }; |
| 93 | +* |
| 94 | +* // Initialize ndarray-like objects representing sub-array views: |
| 95 | +* var views = [ |
| 96 | +* { |
| 97 | +* 'dtype': x.dtype, |
| 98 | +* 'data': x.data, |
| 99 | +* 'shape': [ 2, 2 ], |
| 100 | +* 'strides': [ 2, 1 ], |
| 101 | +* 'offset': x.offset, |
| 102 | +* 'order': x.order |
| 103 | +* }, |
| 104 | +* { |
| 105 | +* 'dtype': sortOrder.dtype, |
| 106 | +* 'data': sortOrder.data, |
| 107 | +* 'shape': [], |
| 108 | +* 'strides': [ 0 ], |
| 109 | +* 'offset': sortOrder.offset, |
| 110 | +* 'order': sortOrder.order |
| 111 | +* } |
| 112 | +* ]; |
| 113 | +* |
| 114 | +* // Define an input strategy: |
| 115 | +* function strategy( x ) { |
| 116 | +* return { |
| 117 | +* 'dtype': x.dtype, |
| 118 | +* 'data': x.data, |
| 119 | +* 'shape': [ 4 ], |
| 120 | +* 'strides': [ 1 ], |
| 121 | +* 'offset': x.offset, |
| 122 | +* 'order': x.order |
| 123 | +* }; |
| 124 | +* } |
| 125 | +* |
| 126 | +* // Apply strided function: |
| 127 | +* nullary10d( wrapper, [ x, sortOrder ], views, [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3 ], [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 4 ], true, strategy, {} ); |
| 128 | +* |
| 129 | +* var arr = ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ); |
| 130 | +* // returns [ [ [ [ [ [ [ [ [ [ [ [ 9.0, 10.0 ], [ 11.0, 12.0 ] ], [ [ 5.0, 6.0 ], [ 7.0, 8.0 ] ], [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ] ] ] ] ] ] ] ] ] ] ] |
| 131 | +*/ |
| 132 | +function nullary10d( fcn, arrays, views, shape, stridesX, isRowMajor, strategyX, opts ) { // eslint-disable-line max-statements |
| 133 | + var dv0; |
| 134 | + var dv1; |
| 135 | + var dv2; |
| 136 | + var dv3; |
| 137 | + var dv4; |
| 138 | + var dv5; |
| 139 | + var dv6; |
| 140 | + var dv7; |
| 141 | + var dv8; |
| 142 | + var dv9; |
| 143 | + var S0; |
| 144 | + var S1; |
| 145 | + var S2; |
| 146 | + var S3; |
| 147 | + var S4; |
| 148 | + var S5; |
| 149 | + var S6; |
| 150 | + var S7; |
| 151 | + var S8; |
| 152 | + var S9; |
| 153 | + var sv; |
| 154 | + var iv; |
| 155 | + var i0; |
| 156 | + var i1; |
| 157 | + var i2; |
| 158 | + var i3; |
| 159 | + var i4; |
| 160 | + var i5; |
| 161 | + var i6; |
| 162 | + var i7; |
| 163 | + var i8; |
| 164 | + var i9; |
| 165 | + var v; |
| 166 | + var i; |
| 167 | + |
| 168 | + // Note on variable naming convention: S#, dv#, i# where # corresponds to the loop number, with `0` being the innermost loop... |
| 169 | + |
| 170 | + // Extract loop variables for purposes of loop interchange: dimensions and loop offset (pointer) increments... |
| 171 | + if ( isRowMajor ) { |
| 172 | + // For row-major ndarrays, the last dimensions have the fastest changing indices... |
| 173 | + S0 = shape[ 9 ]; |
| 174 | + S1 = shape[ 8 ]; |
| 175 | + S2 = shape[ 7 ]; |
| 176 | + S3 = shape[ 6 ]; |
| 177 | + S4 = shape[ 5 ]; |
| 178 | + S5 = shape[ 4 ]; |
| 179 | + S6 = shape[ 3 ]; |
| 180 | + S7 = shape[ 2 ]; |
| 181 | + S8 = shape[ 1 ]; |
| 182 | + S9 = shape[ 0 ]; |
| 183 | + dv0 = [ // offset increment for innermost loop |
| 184 | + stridesX[9] |
| 185 | + ]; |
| 186 | + dv1 = [ |
| 187 | + stridesX[8] - ( S0*stridesX[9] ) |
| 188 | + ]; |
| 189 | + dv2 = [ |
| 190 | + stridesX[7] - ( S1*stridesX[8] ) |
| 191 | + ]; |
| 192 | + dv3 = [ |
| 193 | + stridesX[6] - ( S2*stridesX[7] ) |
| 194 | + ]; |
| 195 | + dv4 = [ |
| 196 | + stridesX[5] - ( S3*stridesX[6] ) |
| 197 | + ]; |
| 198 | + dv5 = [ |
| 199 | + stridesX[4] - ( S4*stridesX[5] ) |
| 200 | + ]; |
| 201 | + dv6 = [ |
| 202 | + stridesX[3] - ( S5*stridesX[4] ) |
| 203 | + ]; |
| 204 | + dv7 = [ |
| 205 | + stridesX[2] - ( S6*stridesX[3] ) |
| 206 | + ]; |
| 207 | + dv8 = [ |
| 208 | + stridesX[1] - ( S7*stridesX[2] ) |
| 209 | + ]; |
| 210 | + dv9 = [ // offset increment for outermost loop |
| 211 | + stridesX[0] - ( S8*stridesX[1] ) |
| 212 | + ]; |
| 213 | + for ( i = 1; i < arrays.length; i++ ) { |
| 214 | + sv = arrays[ i ].strides; |
| 215 | + dv0.push( sv[9] ); |
| 216 | + dv1.push( sv[8] - ( S0*sv[9] ) ); |
| 217 | + dv2.push( sv[7] - ( S1*sv[8] ) ); |
| 218 | + dv3.push( sv[6] - ( S2*sv[7] ) ); |
| 219 | + dv4.push( sv[5] - ( S3*sv[6] ) ); |
| 220 | + dv5.push( sv[4] - ( S4*sv[5] ) ); |
| 221 | + dv6.push( sv[3] - ( S5*sv[4] ) ); |
| 222 | + dv7.push( sv[2] - ( S6*sv[3] ) ); |
| 223 | + dv8.push( sv[1] - ( S7*sv[2] ) ); |
| 224 | + dv9.push( sv[0] - ( S8*sv[1] ) ); |
| 225 | + } |
| 226 | + } else { // order === 'column-major' |
| 227 | + // For column-major ndarrays, the first dimensions have the fastest changing indices... |
| 228 | + S0 = shape[ 0 ]; |
| 229 | + S1 = shape[ 1 ]; |
| 230 | + S2 = shape[ 2 ]; |
| 231 | + S3 = shape[ 3 ]; |
| 232 | + S4 = shape[ 4 ]; |
| 233 | + S5 = shape[ 5 ]; |
| 234 | + S6 = shape[ 6 ]; |
| 235 | + S7 = shape[ 7 ]; |
| 236 | + S8 = shape[ 8 ]; |
| 237 | + S9 = shape[ 9 ]; |
| 238 | + dv0 = [ // offset increment for innermost loop |
| 239 | + stridesX[0] |
| 240 | + ]; |
| 241 | + dv1 = [ |
| 242 | + stridesX[1] - ( S0*stridesX[0] ) |
| 243 | + ]; |
| 244 | + dv2 = [ |
| 245 | + stridesX[2] - ( S1*stridesX[1] ) |
| 246 | + ]; |
| 247 | + dv3 = [ |
| 248 | + stridesX[3] - ( S2*stridesX[2] ) |
| 249 | + ]; |
| 250 | + dv4 = [ |
| 251 | + stridesX[4] - ( S3*stridesX[3] ) |
| 252 | + ]; |
| 253 | + dv5 = [ |
| 254 | + stridesX[5] - ( S4*stridesX[4] ) |
| 255 | + ]; |
| 256 | + dv6 = [ |
| 257 | + stridesX[6] - ( S5*stridesX[5] ) |
| 258 | + ]; |
| 259 | + dv7 = [ |
| 260 | + stridesX[7] - ( S6*stridesX[6] ) |
| 261 | + ]; |
| 262 | + dv8 = [ |
| 263 | + stridesX[8] - ( S7*stridesX[7] ) |
| 264 | + ]; |
| 265 | + dv9 = [ // offset increment for outermost loop |
| 266 | + stridesX[9] - ( S8*stridesX[8] ) |
| 267 | + ]; |
| 268 | + for ( i = 1; i < arrays.length; i++ ) { |
| 269 | + sv = arrays[ i ].strides; |
| 270 | + dv0.push( sv[0] ); |
| 271 | + dv1.push( sv[1] - ( S0*sv[0] ) ); |
| 272 | + dv2.push( sv[2] - ( S1*sv[1] ) ); |
| 273 | + dv3.push( sv[3] - ( S2*sv[2] ) ); |
| 274 | + dv4.push( sv[4] - ( S3*sv[3] ) ); |
| 275 | + dv5.push( sv[5] - ( S4*sv[4] ) ); |
| 276 | + dv6.push( sv[6] - ( S5*sv[5] ) ); |
| 277 | + dv7.push( sv[7] - ( S6*sv[6] ) ); |
| 278 | + dv8.push( sv[8] - ( S7*sv[7] ) ); |
| 279 | + dv9.push( sv[9] - ( S8*sv[8] ) ); |
| 280 | + } |
| 281 | + } |
| 282 | + // Resolve a list of pointers to the first indexed elements in the respective ndarrays: |
| 283 | + iv = offsets( arrays ); |
| 284 | + |
| 285 | + // Shallow copy the list of views to an internal array so that we can update with reshaped views without impacting the original list of views: |
| 286 | + v = copyIndexed( views ); |
| 287 | + |
| 288 | + // Iterate over the loop dimensions... |
| 289 | + for ( i9 = 0; i9 < S9; i9++ ) { |
| 290 | + for ( i8 = 0; i8 < S8; i8++ ) { |
| 291 | + for ( i7 = 0; i7 < S7; i7++ ) { |
| 292 | + for ( i6 = 0; i6 < S6; i6++ ) { |
| 293 | + for ( i5 = 0; i5 < S5; i5++ ) { |
| 294 | + for ( i4 = 0; i4 < S4; i4++ ) { |
| 295 | + for ( i3 = 0; i3 < S3; i3++ ) { |
| 296 | + for ( i2 = 0; i2 < S2; i2++ ) { |
| 297 | + for ( i1 = 0; i1 < S1; i1++ ) { |
| 298 | + for ( i0 = 0; i0 < S0; i0++ ) { |
| 299 | + setViewOffsets( views, iv ); |
| 300 | + v[ 0 ] = strategyX( views[ 0 ] ); |
| 301 | + fcn( v, opts ); |
| 302 | + incrementOffsets( iv, dv0 ); |
| 303 | + } |
| 304 | + incrementOffsets( iv, dv1 ); |
| 305 | + } |
| 306 | + incrementOffsets( iv, dv2 ); |
| 307 | + } |
| 308 | + incrementOffsets( iv, dv3 ); |
| 309 | + } |
| 310 | + incrementOffsets( iv, dv4 ); |
| 311 | + } |
| 312 | + incrementOffsets( iv, dv5 ); |
| 313 | + } |
| 314 | + incrementOffsets( iv, dv6 ); |
| 315 | + } |
| 316 | + incrementOffsets( iv, dv7 ); |
| 317 | + } |
| 318 | + incrementOffsets( iv, dv8 ); |
| 319 | + } |
| 320 | + incrementOffsets( iv, dv9 ); |
| 321 | + } |
| 322 | +} |
| 323 | + |
| 324 | + |
| 325 | +// EXPORTS // |
| 326 | + |
| 327 | +module.exports = nullary10d; |
0 commit comments