You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/base/ssymv/README.md
+33-27Lines changed: 33 additions & 27 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -20,7 +20,7 @@ limitations under the License.
20
20
21
21
# ssymv
22
22
23
-
> Perform the matrix-vector operation `y = α*A*x + β*y` where `α` and `β` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
23
+
> Perform the matrix-vector operation `y = α*A*x + β*y`.
24
24
25
25
<sectionclass="usage">
26
26
@@ -37,12 +37,12 @@ Performs the matrix-vector operation `y = α*A*x + β*y` where `α` and `β` are
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of `x` in reverse order,
#### ssymv.ndarray( order, uplo, N, α, A, LDA, x, sx, ox, β, y, sy, oy )
95
+
#### ssymv.ndarray( uplo, N, α, A, sa1, sa2, oa, x, sx, ox, β, y, sy, oy )
96
96
97
97
Performs the matrix-vector operation `y = α*A*x + β*y` using alternative indexing semantics and where `α` and `β` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
* Performs the matrix-vector operation `y = alpha*A*x + beta*y` where `alpha` and `beta` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
30
+
* Performs the matrix-vector operation `y = α*A*x + β*y` where `α` and `β` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
31
31
*
32
32
* @param order - storage layout
33
-
* @param uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` is to be referenced
33
+
* @param uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced
34
34
* @param N - number of elements along each dimension in the matrix `A`
35
35
* @param alpha - scalar constant
36
-
* @param A - matrix
36
+
* @param A - input matrix
37
37
* @param LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
* Performs the matrix-vector operation `y = alpha*A*x + beta*y` using alternative indexing semantics and where `alpha` and `beta` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
58
+
* Performs the matrix-vector operation `y = α*A*x + β*y`, using alternative indexing semantics and where `α` and `β` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
59
59
*
60
60
* @param order - storage layout
61
61
* @param uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced
62
62
* @param N - number of elements along each dimension in the matrix `A`
63
63
* @param alpha - scalar constant
64
-
* @param A - matrix
65
-
* @param LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
64
+
* @param A - input
65
+
* @param strideA1 - stride for the first dimension of `A`
66
+
* @param strideA2 - stride for the second dimension of `A`
67
+
* @param offsetA - starting index for `A`
66
68
* @param x - first input array
67
69
* @param strideX - `x` stride length
68
-
* @param offsetX - starting `x` index
70
+
* @param offsetX - starting index for `x`
69
71
* @param beta - scalar constant
70
72
* @param y - second input array
71
73
* @param strideY - `y` stride length
72
-
* @param offsetY - starting `y` index
74
+
* @param offsetY - starting index for `y`
73
75
* @returns `y`
74
76
*
75
77
* @example
@@ -79,20 +81,20 @@ interface Routine {
79
81
* var x = new Float32Array( [ 1.0, 1.0, 1.0 ] );
80
82
* var y = new Float32Array( [ 0.0, 0.0, 0.0 ] );
81
83
*
82
-
* ssymv.ndarray( 'row-major', 'lower', 3, 1.0, A, 3, x, 1, 0, 0.0, y, 1, 0 );
84
+
* ssymv.ndarray( 'lower', 3, 1.0, A, 3, 1, 0, x, 1, 0, 0.0, y, 1, 0 );
* Performs the matrix-vector operation `y = alpha*A*x + beta*y` where `alpha` and `beta` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
91
+
* Performs the matrix-vector operation `y = α*A*x + β*y` where `α` and `β` are scalars, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.
90
92
*
91
93
* @param order - storage layout
92
-
* @param uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` is to be referenced
94
+
* @param uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced
93
95
* @param N - number of elements along each dimension in the matrix `A`
94
96
* @param alpha - scalar constant
95
-
* @param A - matrix
97
+
* @param A - input matrix
96
98
* @param LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
97
99
* @param x - first input array
98
100
* @param strideX - `x` stride length
@@ -118,7 +120,7 @@ interface Routine {
118
120
* var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
119
121
* var y = new Float32Array( [ 1.0, 2.0, 3.0 ] );
120
122
*
121
-
* ssymv.ndarray( 'row-major', 'upper', 3, 2.0, A, 3, x, 1, 0, 1.0, y, 2, 0 );
123
+
* ssymv.ndarray( 'upper', 3, 2.0, A, 3, 1, 0, x, 1, 0, 1.0, y, 2, 0 );
0 commit comments