You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/base/strsm/README.md
+28-26Lines changed: 28 additions & 26 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -20,7 +20,7 @@ limitations under the License.
20
20
21
21
# strsm
22
22
23
-
> Solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
23
+
> Solve matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
24
24
25
25
<sectionclass = "usage">
26
26
@@ -30,18 +30,18 @@ limitations under the License.
30
30
var strsm =require( '@stdlib/blas/base/strsm' );
31
31
```
32
32
33
-
#### strsm( order, side, uplo, transa, diag, m, n, alpha, A, LDA, B, LDB )
33
+
#### strsm( order, side, uplo, transa, diag, M, N, alpha, A, LDA, B, LDB )
34
34
35
-
Solves matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
35
+
Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
#### strsm.ndarray( s, ul, t, d, m, n, α, A, sa1, sa2, oa, B, sb1, sb2, ob )
81
+
#### strsm.ndarray( s, ul, t, d, M, N, α, A, sa1, sa2, oa, B, sb1, sb2, ob )
82
82
83
-
Solves matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` using alternative indexing semantics and where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
83
+
Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` using alternative indexing semantics and where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
@@ -98,8 +98,8 @@ The function has the following parameters:
98
98
-**uplo**: specifies whether the upper or lower triangular part of the matrix `A` is supplied.
99
99
-**transa**: specifies the form of `op( A )` to be used in the matrix multiplication.
100
100
-**diag**: specifies whether or not `A` is unit triangular.
101
-
-**m**: number of rows in `B`.
102
-
-**n**: number of columns in `B`.
101
+
-**M**: number of rows in `B`.
102
+
-**N**: number of columns in `B`.
103
103
-**alpha**: scalar constant.
104
104
-**A**: input matrix `A`.
105
105
-**sa1**: stride of the first dimension of `A`.
@@ -112,14 +112,16 @@ The function has the following parameters:
112
112
113
113
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
* Solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
30
+
* Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
31
31
*
32
32
* @param order - storage layout of `A` and `B`
33
33
* @param side - specifies whether `op( A )` appears on the left or right of `X`
34
34
* @param uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
35
35
* @param transa - specifies the form of `op( A )` to be used in matrix multiplication
36
36
* @param diag - specifies whether or not `A` is unit triangular
37
-
* @paramm - number of rows in `B`
38
-
* @paramn - number of columns in `B`
37
+
* @paramM - number of rows in `B`
38
+
* @paramN - number of columns in `B`
39
39
* @param alpha - scalar constant
40
40
* @param A - input matrix `A`
41
41
* @param LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
@@ -46,23 +46,23 @@ interface Routine {
46
46
* @example
47
47
* var Float32Array = require( '@stdlib/array/float32' );
48
48
*
49
-
* var A = new Float32Array( [ 1.0, 3.0, 0.0, 4.0 ] );
50
-
* var B = new Float32Array( [ 5.0, 7.0, 0.0, 8.0 ] );
49
+
* var A = new Float32Array( [ 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 4.0, 5.0, 6.0 ] );
50
+
* var B = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] );
* Solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
58
+
* Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` using alternative indexing semantics and where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
59
59
*
60
60
* @param side - specifies whether `op( A )` appears on the left or right of `X`
61
61
* @param uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
62
62
* @param transa - specifies the form of `op( A )` to be used in matrix multiplication
63
63
* @param diag - specifies whether or not `A` is unit triangular
64
-
* @paramm - number of rows in `B`
65
-
* @paramn - number of columns in `B`
64
+
* @paramM - number of rows in `B`
65
+
* @paramN - number of columns in `B`
66
66
* @param alpha - scalar constant
67
67
* @param A - input matrix `A`
68
68
* @param strideA1 - stride of the first dimension of `A`
@@ -77,25 +77,25 @@ interface Routine {
77
77
* @example
78
78
* var Float32Array = require( '@stdlib/array/float32' );
79
79
*
80
-
* var A = new Float32Array( [ 0.0, 0.0, 1.0, 3.0, 0.0, 4.0 ] );
81
-
* var B = new Float32Array( [ 0.0, 5.0, 7.0, 0.0, 8.0 ] );
80
+
* var A = new Float32Array( [ 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 4.0, 5.0, 6.0 ] );
81
+
* var B = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] );
* Solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
90
+
* Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
91
91
*
92
92
* @param order - storage layout of `A` and `B`
93
93
* @param side - specifies whether `op( A )` appears on the left or right of `X`
94
94
* @param uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
95
95
* @param transa - specifies the form of `op( A )` to be used in matrix multiplication
96
96
* @param diag - specifies whether or not `A` is unit triangular
97
-
* @paramm - number of rows in `B`
98
-
* @paramn - number of columns in `B`
97
+
* @paramM - number of rows in `B`
98
+
* @paramN - number of columns in `B`
99
99
* @param alpha - scalar constant
100
100
* @param A - input matrix `A`
101
101
* @param LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
@@ -106,20 +106,20 @@ interface Routine {
106
106
* @example
107
107
* var Float32Array = require( '@stdlib/array/float32' );
108
108
*
109
-
* var A = new Float32Array( [ 1.0, 3.0, 0.0, 4.0 ] );
110
-
* var B = new Float32Array( [ 5.0, 7.0, 0.0, 8.0 ] );
109
+
* var A = new Float32Array( [ 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 4.0, 5.0, 6.0 ] );
110
+
* var B = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] );
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/base/strsm/lib/base.js
+5-5Lines changed: 5 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -93,7 +93,7 @@ function zeros( M, N, X, strideX1, strideX2, offsetX ) { // TODO: consider movin
93
93
// MAIN //
94
94
95
95
/**
96
-
* Solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
96
+
* Solves matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
97
97
*
98
98
* @private
99
99
* @param {string} side - specifies whether `op( A )` appears on the left or right of `X`
@@ -116,11 +116,11 @@ function zeros( M, N, X, strideX1, strideX2, offsetX ) { // TODO: consider movin
116
116
* @example
117
117
* var Float32Array = require( '@stdlib/array/float32' );
118
118
*
119
-
* var A = new Float32Array( [ 1.0, 3.0, 0.0, 4.0 ] );
120
-
* var B = new Float32Array( [ 5.0, 6.0, 0.0, 8.0 ] );
119
+
* var A = new Float32Array( [ 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 4.0, 5.0, 6.0 ] );
120
+
* var B = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] );
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/base/strsm/lib/index.js
+9-9Lines changed: 9 additions & 9 deletions
Original file line number
Diff line number
Diff line change
@@ -19,29 +19,29 @@
19
19
'use strict';
20
20
21
21
/**
22
-
* BLAS routine to solve matrix equation `op(A) * X = alpha * B` or `X * op(A) = alpha * B` where `alpha` is a scalar, `X` and `B` are `m` by `n` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
22
+
* BLAS routine to solve matrix equation `op(A) * X = α * B` or `X * op(A) = α * B` where `α` is a scalar, `X` and `B` are `M` by `N` matrices, `A` is a unit, or non-unit, upper or lower triangular matrix and `op(A)` is one of `op(A) = A` or `op(A) = A^T`. The matrix `X` is overwritten on `B`.
23
23
*
24
24
* @module@stdlib/blas/base/strsm
25
25
*
26
26
* @example
27
27
* var Float32Array = require( '@stdlib/array/float32' );
28
28
* var strsm = require( '@stdlib/blas/base/strsm' );
29
29
*
30
-
* var A = new Float32Array( [ 1.0, 3.0, 0.0, 4.0 ] );
31
-
* var B = new Float32Array( [ 5.0, 7.0, 0.0, 8.0 ] );
30
+
* var A = new Float32Array( [ 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 4.0, 5.0, 6.0 ] );
31
+
* var B = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] );
0 commit comments