You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/ext/base/README.md
+7-7Lines changed: 7 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -87,8 +87,8 @@ var ns = extblas;
87
87
- <spanclass="signature">[`dsum( N, x, strideX )`][@stdlib/blas/ext/base/dsum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements.</span>
88
88
- <spanclass="signature">[`dsumkbn( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.</span>
89
89
- <spanclass="signature">[`dsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
90
-
- <spanclass="signature">[`dsumors( N, x, stride )`][@stdlib/blas/ext/base/dsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.</span>
91
-
- <spanclass="signature">[`dsumpw( N, x, stride )`][@stdlib/blas/ext/base/dsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using pairwise summation.</span>
90
+
- <spanclass="signature">[`dsumors( N, x, strideX )`][@stdlib/blas/ext/base/dsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.</span>
91
+
- <spanclass="signature">[`dsumpw( N, x, strideX )`][@stdlib/blas/ext/base/dsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of double-precision floating-point strided array elements using pairwise summation.</span>
92
92
- <spanclass="signature">[`gapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapx]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each element in a strided array.</span>
93
93
- <spanclass="signature">[`gapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each strided array element and compute the sum.</span>
94
94
- <spanclass="signature">[`gapxsumkbn( N, alpha, x, strideX )`][@stdlib/blas/ext/base/gapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
@@ -104,11 +104,11 @@ var ns = extblas;
104
104
- <spanclass="signature">[`gfillBy( N, x, stride, clbk[, thisArg] )`][@stdlib/blas/ext/base/gfill-by]</span><spanclass="delimiter">: </span><spanclass="description">fill a strided array according to a provided callback function.</span>
105
105
- <spanclass="signature">[`gfill( N, alpha, x, stride )`][@stdlib/blas/ext/base/gfill]</span><spanclass="delimiter">: </span><spanclass="description">fill a strided array with a specified scalar constant.</span>
106
106
- <spanclass="signature">[`gnannsumkbn( N, x, strideX, out, strideOut )`][@stdlib/blas/ext/base/gnannsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
107
-
- <spanclass="signature">[`gnansum( N, x, stride )`][@stdlib/blas/ext/base/gnansum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values.</span>
108
-
- <spanclass="signature">[`gnansumkbn( N, x, stride )`][@stdlib/blas/ext/base/gnansumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
109
-
- <spanclass="signature">[`gnansumkbn2( N, x, stride )`][@stdlib/blas/ext/base/gnansumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.</span>
110
-
- <spanclass="signature">[`gnansumors( N, x, stride )`][@stdlib/blas/ext/base/gnansumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
111
-
- <spanclass="signature">[`gnansumpw( N, x, stride )`][@stdlib/blas/ext/base/gnansumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.</span>
107
+
- <spanclass="signature">[`gnansum( N, x, strideX )`][@stdlib/blas/ext/base/gnansum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values.</span>
108
+
- <spanclass="signature">[`gnansumkbn( N, x, strideX )`][@stdlib/blas/ext/base/gnansumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
109
+
- <spanclass="signature">[`gnansumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/gnansumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.</span>
110
+
- <spanclass="signature">[`gnansumors( N, x, strideX )`][@stdlib/blas/ext/base/gnansumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
111
+
- <spanclass="signature">[`gnansumpw( N, x, strideX )`][@stdlib/blas/ext/base/gnansumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.</span>
112
112
- <spanclass="signature">[`grev( N, x, stride )`][@stdlib/blas/ext/base/grev]</span><spanclass="delimiter">: </span><spanclass="description">reverse a strided array in-place.</span>
113
113
- <spanclass="signature">[`gsort2hp( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/gsort2hp]</span><spanclass="delimiter">: </span><spanclass="description">simultaneously sort two strided arrays based on the sort order of the first array using heapsort.</span>
114
114
- <spanclass="signature">[`gsort2ins( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/gsort2ins]</span><spanclass="delimiter">: </span><spanclass="description">simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+5-5Lines changed: 5 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -81,7 +81,7 @@ The namespace contains the following statistical functions:
81
81
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
82
82
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
83
83
- <spanclass="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
84
-
- <spanclass="signature">[`dmeanwd( N, x, stride )`][@stdlib/stats/base/dmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
84
+
- <spanclass="signature">[`dmeanwd( N, x, strideX )`][@stdlib/stats/base/dmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
85
85
- <spanclass="signature">[`dmediansorted( N, x, strideX )`][@stdlib/stats/base/dmediansorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
86
86
- <spanclass="signature">[`dmidrange( N, x, strideX )`][@stdlib/stats/base/dmidrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mid-range of a double-precision floating-point strided array.</span>
87
87
- <spanclass="signature">[`dmin( N, x, strideX )`][@stdlib/stats/base/dmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array.</span>
@@ -132,11 +132,11 @@ The namespace contains the following statistical functions:
132
132
- <spanclass="signature">[`dsnanmeanpn( N, x, stride )`][@stdlib/stats/base/dsnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
133
133
- <spanclass="signature">[`dsnanmeanwd( N, x, stride )`][@stdlib/stats/base/dsnanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
134
134
- <spanclass="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
135
-
- <spanclass="signature">[`dstdevch( N, correction, x, stride )`][@stdlib/stats/base/dstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
135
+
- <spanclass="signature">[`dstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
136
136
- <spanclass="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
137
-
- <spanclass="signature">[`dstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
138
-
- <spanclass="signature">[`dstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
139
-
- <spanclass="signature">[`dstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
137
+
- <spanclass="signature">[`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
138
+
- <spanclass="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
139
+
- <spanclass="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
140
140
- <spanclass="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
141
141
- <spanclass="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
142
142
- <spanclass="signature">[`dvariance( N, correction, x, stride )`][@stdlib/stats/base/dvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array.</span>
0 commit comments