Skip to content

Commit 8e9e7c4

Browse files
committed
fix: apply suggestions from review
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: na - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: passed - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent 8cd6984 commit 8e9e7c4

File tree

2 files changed

+33
-42
lines changed
  • lib/node_modules/@stdlib/math/base/special/bessely1/src

2 files changed

+33
-42
lines changed

lib/node_modules/@stdlib/math/base/special/bessely1/src/addon.c

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,5 +19,4 @@
1919
#include "stdlib/math/base/special/bessely1.h"
2020
#include "stdlib/math/base/napi/unary.h"
2121

22-
// cppcheck-suppress shadowFunction
2322
STDLIB_MATH_BASE_NAPI_MODULE_D_D( stdlib_base_bessely1 )

lib/node_modules/@stdlib/math/base/special/bessely1/src/main.c

Lines changed: 33 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,6 @@ static const double x22 = -6.4592058648672279948e-06;
6767
* @param x value at which to evaluate the rational function
6868
* @return evaluated rational function
6969
*/
70-
7170
static double rational_p1q1( const double x ) {
7271
double ax;
7372
double ix;
@@ -87,7 +86,7 @@ static double rational_p1q1( const double x ) {
8786
} else {
8887
ix = 1.0 / x;
8988
s1 = -317.1442466004613 + (ix * (221579.5322228026 + (ix * (-59157479.9974084 + (ix * (7214454821.450256 + (ix * (-375959744978.196 + (ix * (5470861171652.543 + (ix * 40535726612579.55)))))))))));
90-
s2 = 1.0 + (x * (820.7990816839387 + (x * (381364.70753052575 + (x * (122504351.22182964 + (x * (27800352738.690586 + (x * (4127228620040.646 + (x * 307378739210792.9)))))))))));
89+
s2 = 1.0 + (ix * (820.7990816839387 + (ix * (381364.70753052575 + (ix * (122504351.22182964 + (ix * (27800352738.690586 + (ix * (4127228620040.646 + (ix * 307378739210792.9)))))))))));
9190
}
9291
return s1 / s2;
9392
}
@@ -97,7 +96,7 @@ static double rational_p1q1( const double x ) {
9796
// BEGIN: rational_p2q2
9897

9998
/**
100-
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
99+
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
101100
*
102101
* ## Notes
103102
*
@@ -106,9 +105,8 @@ static double rational_p1q1( const double x ) {
106105
*
107106
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
108107
*
109-
* @private
110-
* @param {number} x - value at which to evaluate the rational function
111-
* @returns {number} evaluated rational function
108+
* @param x value at which to evaluate the rational function
109+
* @return evaluated rational function
112110
*/
113111
static double rational_p2q2( const double x ) {
114112
double ax;
@@ -139,7 +137,7 @@ static double rational_p2q2( const double x ) {
139137
// BEGIN: rational_pcqc
140138

141139
/**
142-
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
140+
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
143141
*
144142
* ## Notes
145143
*
@@ -148,9 +146,8 @@ static double rational_p2q2( const double x ) {
148146
*
149147
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
150148
*
151-
* @private
152-
* @param {number} x - value at which to evaluate the rational function
153-
* @returns {number} evaluated rational function
149+
* @param x value at which to evaluate the rational function
150+
* @return evaluated rational function
154151
*/
155152
static double rational_pcqc( const double x ) {
156153
double ax;
@@ -181,7 +178,7 @@ static double rational_pcqc( const double x ) {
181178
// BEGIN: rational_psqs
182179

183180
/**
184-
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
181+
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
185182
*
186183
* ## Notes
187184
*
@@ -190,9 +187,8 @@ static double rational_pcqc( const double x ) {
190187
*
191188
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
192189
*
193-
* @private
194-
* @param {number} x - value at which to evaluate the rational function
195-
* @returns {number} evaluated rational function
190+
* @param x value at which to evaluate the rational function
191+
* @return evaluated rational function
196192
*/
197193
static double rational_psqs( const double x ) {
198194
double ax;
@@ -233,63 +229,59 @@ static double rational_psqs( const double x ) {
233229
* @return evaluated Bessel function
234230
*
235231
* @example
236-
* double v = y1( 0.0 );
232+
* double v = stdlib_base_bessely1( 0.0 );
237233
* // returns -Infinity
238234
*/
239-
240235
double stdlib_base_bessely1( double x ) {
241236
double rc;
242237
double rs;
243-
double y;
238+
double y2;
244239
double r;
240+
double y;
245241
double s;
246242
double c;
247243
double z;
248244
double f;
249-
double y2;
250-
double xc;
251245

252-
if (x < 0.0) {
253-
return NAN;
246+
if ( x < 0.0 ) {
247+
return 0.0 / 0.0; // NaN
254248
}
255-
if (x == 0.0) {
256-
return -INFINITY;
249+
if ( x == 0.0 ) {
250+
return STDLIB_CONSTANT_FLOAT64_NINF;
257251
}
258-
if (x == INFINITY) {
252+
if ( x == STDLIB_CONSTANT_FLOAT64_PINF ) {
259253
return 0.0;
260254
}
261-
xc = x;
262-
if (xc <= 4.0) {
263-
y = xc * xc;
264-
z = ( stdlib_base_ln( xc / x1 ) * stdlib_base_besselj1( xc ) ) * TWO_DIV_PI;
255+
if ( x <= 4.0 ) {
256+
y = x * x;
257+
z = ( stdlib_base_ln( x / x1 ) * stdlib_base_besselj1( x ) ) * TWO_DIV_PI;
265258
r = rational_p1q1( y );
266-
f = ( ( xc+x1 ) * ( ( xc - ( x11 / 256.0) ) - x12 ) ) / xc;
267-
return z + ( f * r );
259+
f = ( ( x+x1 ) * ( (x - (x11/256.0)) - x12 ) ) / x;
260+
return z + ( f*r );
268261
}
269-
if ( xc <= 8.0 ) {
270-
y = xc * xc;
271-
z = ( stdlib_base_ln( xc / x2 ) * stdlib_base_besselj1( xc ) ) * TWO_DIV_PI;
262+
if ( x <= 8.0 ) {
263+
y = x * x;
264+
z = ( stdlib_base_ln( x / x2 ) * stdlib_base_besselj1( x ) ) * TWO_DIV_PI;
272265
r = rational_p2q2( y );
273-
f = ( ( xc + x2 ) * ( ( xc - ( x21 / 256.0 ) ) - x22 ) ) / xc;
274-
return z + ( f * r );
266+
f = ( ( x+x2 ) * ( (x - (x21/256.0)) - x22 ) ) / x;
267+
return z + ( f*r );
275268
}
276-
277-
y = 8.0 / xc;
269+
y = 8.0 / x;
278270
y2 = y * y;
279271
rc = rational_pcqc( y2 );
280272
rs = rational_psqs( y2 );
281-
f = ONE_DIV_SQRT_PI / stdlib_base_sqrt( xc );
273+
f = ONE_DIV_SQRT_PI / stdlib_base_sqrt( x );
282274

283275
/*
284276
* This code is really just:
285277
*
286278
* ```
287-
* z = x - 0.75 * pi;
279+
* z = x - 0.75 * PI;
288280
* return f * (rc * sin(z) + y * rs * cos(z));
289281
* ```
290282
*
291283
* But using the sin/cos addition rules, plus constants for sin/cos of `3π/4` which then cancel out with corresponding terms in "f".
292284
*/
293-
stdlib_base_sincos( xc, &s, &c );
294-
return f * ( ( ( y * rs ) * ( s - c ) ) - ( rc * ( s + c ) ) );
285+
stdlib_base_sincos( x, &s, &c );
286+
return f * ( ( ( (y*rs) * (s-c) ) - ( rc * (s+c) ) ) );
295287
}

0 commit comments

Comments
 (0)