Skip to content

Commit b650a37

Browse files
authored
docs: update namespace table of contents
PR-URL: #6876 Reviewed-by: Athan Reines <[email protected]> Reviewed-by: Philipp Burckhardt <[email protected]>
1 parent e696a0e commit b650a37

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lib/node_modules/@stdlib/stats/base/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -71,9 +71,9 @@ The namespace contains the following statistical functions:
7171
- <span class="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
7272
- <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
7373
- <span class="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
74-
- <span class="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
74+
- <span class="signature">[`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
7575
- <span class="signature">[`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
76-
- <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
76+
- <span class="signature">[`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
7777
- <span class="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
7878
- <span class="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
7979
- <span class="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function.</span>
@@ -119,15 +119,15 @@ The namespace contains the following statistical functions:
119119
- <span class="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values.</span>
120120
- <span class="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
121121
- <span class="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
122-
- <span class="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
122+
- <span class="signature">[`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
123123
- <span class="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
124124
- <span class="signature">[`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
125125
- <span class="signature">[`ndarray`][@stdlib/stats/base/ndarray]</span><span class="delimiter">: </span><span class="description">base ndarray statistical functions.</span>
126126
- <span class="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function.</span>
127127
- <span class="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array.</span>
128128
- <span class="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
129129
- <span class="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
130-
- <span class="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
130+
- <span class="signature">[`smean( N, x, strideX )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
131131
- <span class="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
132132
- <span class="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
133133
- <span class="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>

0 commit comments

Comments
 (0)