You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -71,9 +71,9 @@ The namespace contains the following statistical functions:
71
71
- <spanclass="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
72
72
- <spanclass="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
73
73
- <spanclass="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
74
-
- <spanclass="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
74
+
- <spanclass="signature">[`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
75
75
- <spanclass="signature">[`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
76
-
- <spanclass="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
76
+
- <spanclass="signature">[`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
77
77
- <spanclass="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
78
78
- <spanclass="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
79
79
- <spanclass="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array via a callback function.</span>
@@ -119,15 +119,15 @@ The namespace contains the following statistical functions:
119
119
- <spanclass="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values.</span>
120
120
- <spanclass="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
121
121
- <spanclass="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
122
-
- <spanclass="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
122
+
- <spanclass="signature">[`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
123
123
- <spanclass="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
124
124
- <spanclass="signature">[`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <spanclass="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array via a callback function.</span>
127
127
- <spanclass="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array.</span>
128
128
- <spanclass="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
129
129
- <spanclass="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
130
-
- <spanclass="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
130
+
- <spanclass="signature">[`smean( N, x, strideX )`][@stdlib/stats/base/smean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
131
131
- <spanclass="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
132
132
- <spanclass="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
133
133
- <spanclass="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
0 commit comments