You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/ext/base/README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -118,9 +118,9 @@ var ns = extblas;
118
118
- <spanclass="signature">[`gsortsh( N, order, x, stride )`][@stdlib/blas/ext/base/gsortsh]</span><spanclass="delimiter">: </span><spanclass="description">sort a strided array using Shellsort.</span>
119
119
- <spanclass="signature">[`gsum( N, x, stride )`][@stdlib/blas/ext/base/gsum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements.</span>
120
120
- <spanclass="signature">[`gsumkbn( N, x, stride )`][@stdlib/blas/ext/base/gsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.</span>
121
-
- <spanclass="signature">[`gsumkbn2( N, x, stride )`][@stdlib/blas/ext/base/gsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
122
-
- <spanclass="signature">[`gsumors( N, x, stride )`][@stdlib/blas/ext/base/gsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using ordinary recursive summation.</span>
123
-
- <spanclass="signature">[`gsumpw( N, x, stride )`][@stdlib/blas/ext/base/gsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using pairwise summation.</span>
121
+
- <spanclass="signature">[`gsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/gsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
122
+
- <spanclass="signature">[`gsumors( N, x, strideX )`][@stdlib/blas/ext/base/gsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using ordinary recursive summation.</span>
123
+
- <spanclass="signature">[`gsumpw( N, x, strideX )`][@stdlib/blas/ext/base/gsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using pairwise summation.</span>
124
124
- <spanclass="signature">[`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each element in a single-precision floating-point strided array.</span>
125
125
- <spanclass="signature">[`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum.</span>
126
126
- <spanclass="signature">[`sapxsumkbn( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -120,7 +120,7 @@ The namespace contains the following statistical functions:
120
120
- <spanclass="signature">[`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
121
121
- <spanclass="signature">[`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
122
122
- <spanclass="signature">[`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
123
-
- <spanclass="signature">[`dsemwd( N, correction, x, stride )`][@stdlib/stats/base/dsemwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.</span>
123
+
- <spanclass="signature">[`dsemwd( N, correction, x, strideX )`][@stdlib/stats/base/dsemwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.</span>
124
124
- <spanclass="signature">[`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
125
125
- <spanclass="signature">[`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
126
126
- <spanclass="signature">[`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.</span>
0 commit comments