You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+3-6Lines changed: 3 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -61,7 +61,6 @@ The namespace contains the following statistical functions:
61
61
- <spanclass="signature">[`cumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative maximum absolute value of a strided array.</span>
62
62
- <spanclass="signature">[`cumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum of a strided array.</span>
63
63
- <spanclass="signature">[`cuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cuminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum absolute value of a strided array.</span>
64
-
- <spanclass="signature">[`dmean( N, x, strideX )`][@stdlib/stats/strided/dmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
65
64
- <spanclass="signature">[`dmeanpn( N, x, strideX )`][@stdlib/stats/base/dmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
66
65
- <spanclass="signature">[`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array.</span>
67
66
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
@@ -95,12 +94,12 @@ The namespace contains the following statistical functions:
95
94
- <spanclass="signature">[`mskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array according to a mask.</span>
96
95
- <spanclass="signature">[`mskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array according to a mask.</span>
97
96
- <spanclass="signature">[`mskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array according to a mask.</span>
98
-
- <spanclass="signature">[`nanmaxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmax-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array via a callback function, ignoring `NaN` values.</span>
97
+
- <spanclass="signature">[`nanmaxBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/base/nanmax-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array via a callback function, ignoring `NaN` values.</span>
99
98
- <spanclass="signature">[`nanmax( N, x, strideX )`][@stdlib/stats/base/nanmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array, ignoring `NaN` values.</span>
100
-
- <spanclass="signature">[`nanmaxabs( N, x, stride )`][@stdlib/stats/base/nanmaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a strided array, ignoring `NaN` values.</span>
99
+
- <spanclass="signature">[`nanmaxabs( N, x, strideX )`][@stdlib/stats/base/nanmaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a strided array, ignoring `NaN` values.</span>
101
100
- <spanclass="signature">[`nanmean( N, x, stride )`][@stdlib/stats/base/nanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values.</span>
102
101
- <spanclass="signature">[`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
103
-
- <spanclass="signature">[`nanmeanpn( N, x, stride )`][@stdlib/stats/base/nanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
102
+
- <spanclass="signature">[`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
104
103
- <spanclass="signature">[`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
105
104
- <spanclass="signature">[`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.</span>
106
105
- <spanclass="signature">[`nanmin( N, x, strideX )`][@stdlib/stats/base/nanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a strided array, ignoring `NaN` values.</span>
0 commit comments