You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/ext/base/README.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -121,8 +121,8 @@ var ns = extblas;
121
121
- <spanclass="signature">[`gsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/gsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
122
122
- <spanclass="signature">[`gsumors( N, x, strideX )`][@stdlib/blas/ext/base/gsumors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using ordinary recursive summation.</span>
123
123
- <spanclass="signature">[`gsumpw( N, x, strideX )`][@stdlib/blas/ext/base/gsumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of strided array elements using pairwise summation.</span>
124
-
- <spanclass="signature">[`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each element in a single-precision floating-point strided array.</span>
125
-
- <spanclass="signature">[`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum.</span>
124
+
- <spanclass="signature">[`sapx( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapx]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each element in a single-precision floating-point strided array.</span>
125
+
- <spanclass="signature">[`sapxsum( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum.</span>
126
126
- <spanclass="signature">[`sapxsumkbn( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
127
127
- <spanclass="signature">[`sapxsumkbn2( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.</span>
128
128
- <spanclass="signature">[`sapxsumors( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumors]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -94,7 +94,7 @@ The namespace contains the following statistical functions:
94
94
- <spanclass="signature">[`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.</span>
95
95
- <spanclass="signature">[`dnanmeanors( N, x, stride )`][@stdlib/stats/base/dnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
96
96
- <spanclass="signature">[`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
97
-
- <spanclass="signature">[`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
97
+
- <spanclass="signature">[`dnanmeanpw( N, x, strideX )`][@stdlib/stats/base/dnanmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
98
98
- <spanclass="signature">[`dnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dnanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.</span>
99
99
- <spanclass="signature">[`dnanmin( N, x, strideX )`][@stdlib/stats/base/dnanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
100
100
- <spanclass="signature">[`dnanminabs( N, x, strideX )`][@stdlib/stats/base/dnanminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
@@ -124,7 +124,7 @@ The namespace contains the following statistical functions:
124
124
- <spanclass="signature">[`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
125
125
- <spanclass="signature">[`dsmeanors( N, x, strideX )`][@stdlib/stats/base/dsmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.</span>
126
126
- <spanclass="signature">[`dsmeanpn( N, x, strideX )`][@stdlib/stats/base/dsmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
127
-
- <spanclass="signature">[`dsmeanpw( N, x, stride )`][@stdlib/stats/base/dsmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
127
+
- <spanclass="signature">[`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
128
128
- <spanclass="signature">[`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
129
129
- <spanclass="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
130
130
- <spanclass="signature">[`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
@@ -210,7 +210,7 @@ The namespace contains the following statistical functions:
210
210
- <spanclass="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
211
211
- <spanclass="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
212
212
- <spanclass="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
213
-
- <spanclass="signature">[`smeanli( N, x, stride )`][@stdlib/stats/base/smeanli]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
213
+
- <spanclass="signature">[`smeanli( N, x, strideX )`][@stdlib/stats/base/smeanli]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
214
214
- <spanclass="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
215
215
- <spanclass="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
216
216
- <spanclass="signature">[`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
0 commit comments