You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/number/uint32/base/README.md
+12Lines changed: 12 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -43,9 +43,13 @@ var o = ns;
43
43
44
44
<divclass="namespace-toc">
45
45
46
+
- <spanclass="signature">[`add( x, y )`][@stdlib/number/uint32/base/add]</span><spanclass="delimiter">: </span><spanclass="description">compute the sum of two unsigned 32-bit integers.</span>
46
47
- <spanclass="signature">[`fromBinaryStringUint32( bstr )`][@stdlib/number/uint32/base/from-binary-string]</span><spanclass="delimiter">: </span><spanclass="description">create an unsigned 32-bit integer from a literal bit representation.</span>
48
+
- <spanclass="signature">[`mul( x, y )`][@stdlib/number/uint32/base/mul]</span><spanclass="delimiter">: </span><spanclass="description">multiply two unsigned 32-bit integers.</span>
49
+
- <spanclass="signature">[`muldw( a, b )`][@stdlib/number/uint32/base/muldw]</span><spanclass="delimiter">: </span><spanclass="description">compute the double word product of two unsigned 32-bit integers.</span>
47
50
- <spanclass="signature">[`rotl32( x, shift )`][@stdlib/number/uint32/base/rotl]</span><spanclass="delimiter">: </span><spanclass="description">bitwise rotation to the left.</span>
48
51
- <spanclass="signature">[`rotr32( x, shift )`][@stdlib/number/uint32/base/rotr]</span><spanclass="delimiter">: </span><spanclass="description">bitwise rotation to the right.</span>
52
+
- <spanclass="signature">[`sub( x, y )`][@stdlib/number/uint32/base/sub]</span><spanclass="delimiter">: </span><spanclass="description">subtract two unsigned 32-bit integers.</span>
49
53
- <spanclass="signature">[`toBinaryStringUint32( x )`][@stdlib/number/uint32/base/to-binary-string]</span><spanclass="delimiter">: </span><spanclass="description">return a string giving the literal bit representation of an unsigned 32-bit integer.</span>
50
54
- <spanclass="signature">[`uint32ToInt32( x )`][@stdlib/number/uint32/base/to-int32]</span><spanclass="delimiter">: </span><spanclass="description">convert an unsigned 32-bit integer to a signed 32-bit integer.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+1-10Lines changed: 1 addition & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -118,12 +118,10 @@ The namespace contains the following statistical functions:
118
118
- <spanclass="signature">[`range( N, x, strideX )`][@stdlib/stats/base/range]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array.</span>
119
119
- <spanclass="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
120
120
- <spanclass="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
121
-
- <spanclass="signature">[`smean( N, x, strideX )`][@stdlib/stats/strided/smean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
122
121
- <spanclass="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
123
122
- <spanclass="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
124
123
- <spanclass="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
125
124
- <spanclass="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
126
-
- <spanclass="signature">[`smeanpn( N, x, strideX )`][@stdlib/stats/strided/smeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
127
125
- <spanclass="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
128
126
- <spanclass="signature">[`snanstdev( N, correction, x, stride )`][@stdlib/stats/base/snanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values.</span>
129
127
- <spanclass="signature">[`snanstdevch( N, correction, x, stride )`][@stdlib/stats/base/snanstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
@@ -137,7 +135,6 @@ The namespace contains the following statistical functions:
137
135
- <spanclass="signature">[`snanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/snanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
138
136
- <spanclass="signature">[`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
139
137
- <spanclass="signature">[`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
140
-
- <spanclass="signature">[`sstdev( N, correction, x, strideX )`][@stdlib/stats/strided/sstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a single-precision floating-point strided array.</span>
141
138
- <spanclass="signature">[`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.</span>
142
139
- <spanclass="signature">[`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array.</span>
143
140
- <spanclass="signature">[`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass trial mean algorithm.</span>
@@ -146,7 +143,7 @@ The namespace contains the following statistical functions:
146
143
- <spanclass="signature">[`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using Welford's algorithm.</span>
147
144
- <spanclass="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
148
145
- <spanclass="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array.</span>
149
-
- <spanclass="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
146
+
- <spanclass="signature">[`svariancewd( N, correction, x, strideX )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
150
147
- <spanclass="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array.</span>
151
148
- <spanclass="signature">[`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
152
149
- <spanclass="signature">[`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a two-pass algorithm.</span>
0 commit comments